Advanced SearchSearch Tips
High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Analytical Science and Technology
  • Volume 27, Issue 2,  2014, pp.79-91
  • Publisher : The Korean Society of Analytical Science
  • DOI : 10.5806/AST.2014.27.2.79
 Title & Authors
High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid
Nam, Sang-Kyu; Lee, Byung-Chul;
  PDF(new window)
Solubility data of carbon dioxide () in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide () ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the solubility in the ionic liquid have never been reported in the literature by other investigators. The solubilities of were determined by measuring the bubble point or cloud point pressures of the mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the solubility, the solubilities in used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (). As the equilibrium pressure increased, the solubility in increased sharply. On the other hand, the solubility decreased with increasing temperature. The mole fraction-based solubilities were almost the same for both and , regardless of temperature and pressure. The phase equilibrium data for the systems have been correlated using the Peng-Robinson equation of state.
ionic liquid;carbon dioxide;solubility;piperidinium;thermodynamic modeling;Peng-Robinson equation of state;
 Cited by
High-pressure solubility of carbon dioxide in pyrrolidinium-based ionic liquids: [bmpyr][dca] and [bmpyr][Tf2N], Korean Journal of Chemical Engineering, 2015, 32, 3, 521  crossref(new windwow)
M. Ramdin, T. W. de Loos and T. J. H. Vlugt, Ind. Eng. Chem. Res., 51, 8149-8177 (2012). crossref(new window)

R. S. Haszeldine, Science, 325, 1647-1651 (2009). crossref(new window)

G. T. Rochelle, Science, 325, 1652-1654 (2009). crossref(new window)

H. Zhao, Chem. Eng. Commun., 193, 1660 (2006). crossref(new window)

A. L Revelli, F. Mutelet and J. N. Jaubert, J. Phys. Chem. B, 114, 4600 (2010). crossref(new window)

K. Kedra-Krolik, F. Mutelet and J. N. Jaubert, Ind. Eng. Chem. Res., 50, 2296 (2011). crossref(new window)

J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res., 48, 2739 (2009). crossref(new window)

M. Hasib-ur-Rahman, M. Siaj and F. Larachi, Chem. Eng. Processing, 49, 313-322 (2010). crossref(new window)

F. Karadas, M. Atilhan and S. Aparicio, Energy Fuels, 24, 5817-5828 (2010). crossref(new window)

M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, J. Phys. Chem. B, 111, 9001-9009 (2007). crossref(new window)

J. L. Anthony, J. L. Anderson, E. J. Maginn and J. F. Brennecke, J. Phys. Chem. B, 109, 6366 (2005). crossref(new window)

J. Jacquemin, P. Husson, V. Majer and M. F. Costa- Gomes, J. Solution Chem., 36, 967 (2007). crossref(new window)

P. J. Carvalho, V. H. Alvarez, J. J. B. Machado, J. Pauly, J. L. Daridon, I. M. Marrucho, M. Aznar and J. A. P. Coutinho, J. Supercrit. Fluids, 48, 99 (2009). crossref(new window)

W. Ren, B. Sensenich and A. M. Scurto, J. Chem. Thermodyn., 42, 305 (2010). crossref(new window)

A. L. Revelli, F. Mutelet and J. N. Jaubert, J. Phys. Chem. B, 114, 12908 (2010). crossref(new window)

E. K. Shin, B. C. Lee and J. S. Lim, J. Supercrit. Fluids, 45, 282-292 (2008). crossref(new window)

E. K. Shin and B. C. Lee, J. Chem. Eng. Data, 53, 2728-2734 (2008). crossref(new window)

J.-Y. Jung and B.-C. Lee, Analyt. Sci. Technol., 24(6), 467-476 (2011). crossref(new window)

Y.-H. Jung, J.-Y. Jung, Y.-R. Jin, B.-C. Lee and I.-H. Baek, J. Chem. Eng. Data, 57, 3321-3329 (2012). crossref(new window)

S. G. Nam and B.-C. Lee, Korean J. Chem. Eng., 30(2), 474-481 (2013). crossref(new window)

Z. Lei, C. Dai and B. Chen, Chem. Rev., 114, 1289-1326 (2014). crossref(new window)

R. Macias-Salinas, J. A. Chavez-Velasco, M. A. Aquino-Olivos, J. L. Mendoza de la Cruz and J. C. Sanchez- Ochoa, Ind. Eng. Chem. Res., 52, 7593-7601 (2013). crossref(new window)

P. J. Carvalho and A. P. Coutinho, J. Phys. Chem. Lett., 1, 774 (2010). crossref(new window)

M. R. Ally, J. Braunstein, R. E. Baltus, S. Dai, D. W. DePaoli and J. M. Simonson, Ind. Eng. Chem. Res., 43, 1296 (2004). crossref(new window)

P. Scovazzo, D. Camper, J. Kieft, J. Poshusta, C. Koval and R. Noble, Ind. Eng. Chem. Res., 43, 6855 (2004). crossref(new window)

A. Shariati and C. J. Peters, J. Supercrit. Fluids, 25, 109 (2003). crossref(new window)

M. Yazdizadeh, F. Rahmani and A. A. Forghani, Korean J. Chem. Eng., 28(1), 246-251 (2011). crossref(new window)

F. M. Maia, I. Tsivintzelis, O. Rodriguez, E. A. Macedo and G. M. Kontogeorgis, Fluid Phase Equilib., 332, 128 (2012). crossref(new window)

X. Ji and H. Adidharma, Fluid Phase Equilib., 293, 141 (2010). crossref(new window)

L. F. Vega, O. Vilaseca, F. Llovell and J. S. Andreu, Fluid Phase Equilib., 294, 15 (2010). crossref(new window)

Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).

J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice-Hall, NJ, 1999.

J. O. Valderrama, L. A. Forero and R. E. Rojas, Ind. Eng. Chem. Res., 51, 7838-7844 (2012). crossref(new window)

Winnick, J., Chemical Engineering Thermodynamics, John Wiley & Sons, New York, NY, 1997, pp. 451-463.

IMSL Math/Library: Fortran Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc., 1994.