JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Inhibitory effect of Angelica gigas extract powder on induced inflammatory cytokines in rats osteoarthritis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Analytical Science and Technology
  • Volume 28, Issue 4,  2015, pp.260-269
  • Publisher : The Korean Society of Analytical Science
  • DOI : 10.5806/AST.2015.28.4.260
 Title & Authors
Inhibitory effect of Angelica gigas extract powder on induced inflammatory cytokines in rats osteoarthritis
Kwon, Jin-Hwan; Han, Min-Seok; Lee, Bu-Min; Lee, Yong-Moon;
  PDF(new window)
 Abstract
The protective effects of extract powder of Angelica gigas on the degeneration of the articular cartilage in rats was investigated with monosodium iodoacetate (MIA)-induced osteoarthritis, The treatment of high concentration (50 μg/mL) of Angelica gigas effectively inhibited nitric oxide (NO) production induced by interleukin-1α (IL-1α) without any cytotoxicity. Specifically, mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose dependently reduced by extract powder of Angelica gigas. Importantly, mRNA expression in articular cartilage of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were clearly reduced. The inflammatory cytokines in blood were also reduced as well. These results suggested that the protective effects on the degeneration of the articular cartilage was derived from the inhibitory effects of mRNA and protein expression of tested inflammatory cytokines which is linked to prevent the degradation of proteoglycan (PG), the main matrix content in articular cartilage. Meanwhile, the 2 hrs incubation of decursin, a major compound of extract powder in rat whole blood rapidely converted decursin into decursinol which shows string anti-inflammatory activity. The coverted decursinol was detected after 8 hrs in whole blood by LC-MS/MS. Conclusively, the inhibitory effects of inflammatory cytokines production in osteoarthritis may be derived from the production of decursinol, which performs against inflammatroy cytokines like TNF-α, IL-1β, and IL-6.
 Keywords
Angelica gigas;osteoarthritis;inflammatory cytokines;;decursin;decursinol;
 Language
Korean
 Cited by
 References
1.
R. Mardones, C. M. Jofré and J. J. Minguell, Int. J. Stem. Cells., 8(1), 48-53 (2015). crossref(new window)

2.
D. Pereira, E. Ramos and J. Branco, Acta Med. Port., 28(1), 99-106 (2015).

3.
M. Schuliga, Biomolecules, 5(3), 1266-1283 (2015). crossref(new window)

4.
M. L. Buckley and D. P. Ramji, Biochim Biophys Acta, 1852(7), 1498-1510 (2015). crossref(new window)

5.
B. Song, G. Huang, Y. Xiong, J. Liu, L. Xu, Z. Wang, G. Li, J. Lu and S. Guan, J. Med. Food., 16(11), 997-1003 (2013). crossref(new window)

6.
M. Endale, S.C. Park, S. Kim, S.H. Kim, Y. Yang, J.Y. Cho and M.H. Rhee, Immunobiology, 218(12), 1452-1467 (2013). crossref(new window)

7.
C. Y. Wenham, M. McDermott and P.G. Conaghan, Curr Pharm Des., 21(17), 2206-2215 (2015). crossref(new window)

8.
O. Ham, C. Y. Lee, R. Kim, J. Lee, S. Oh, M. Y. Lee, J. Kim, K. C. Hwang, L. S. Maeng and W. Chang, Int. J. Mol Sci., 16(7), 14961-14978 (2015). crossref(new window)

9.
T. Leroux, J. Chahal, D. Wasserstein, N. N. Verma, A. A. Romeo. Sports Health., 7(4), 303-307 (2015). crossref(new window)

10.
T. Manyanga, M. Froese, R. Zarychanski, A. Abou-Setta, C. Friesen, M. Tennenhouse, B. L. Shay, BMC Complement Altern Med., 14, 312 (2014). crossref(new window)

11.
N. Schuelert and J. J. McDougall, Neurosci. Lett., 465(2), 184-188 (2009). crossref(new window)

12.
O. V. Nemirovskiy, M. R. Radabaugh, P. Aggarwal, C. L. Funckes-Shippy, S. J. Mnich, D. M. Meyer, T. Sunyer, W. Rodney Mathews and T. P. Misko. Nitric Oxide., 20(3), 150-156 (2009). crossref(new window)

13.
S. Y. Jeong, H. M. Kim, K. H. Lee, K. Y. Kim, D. S. Huang, J. H. Kim and R. S. Seong, Chem. Pharm. Bull. (Tokyo)., 63(7), 504-511 (2015). crossref(new window)

14.
K. Tomiyama, A. Yamaguchi, T. Kuriyama and Y. Arakawa, J. Immunotoxicol, 6(3), 184-193 (2009). crossref(new window)

15.
Y. Huang, Y. Lu, L. Zhang, J. Yan, J. Jiang and H. Jiang, Int. J. Mol. Sci., 15(3), 4049-4059 (2014). crossref(new window)

16.
M. Kim, Y. G. Park, H. J. Lee, S. J. Lim and C. W. Nho, J. Agric. Food Chem., 63(22), 5428-5438 (2015). crossref(new window)

17.
Y. Shen, S. Yang, Z. Shi, T. Lin, H. Zhu, F. Bi, A. Liu, X. Ying, H. Liu, K. Yu and S. Yan, Inflammation, 38(2),736-744 (2015). crossref(new window)

18.
J. H. Kwon, M. S. Han, B. M. Lee and Y. M. Lee, Anal. Sci. Tech., 28(1), 72-77 (2015). crossref(new window)

19.
J. S. Song, J. W. Chae, K. R. Lee, B. H. Lee, E. J. Choi, S. H. Ahn, K. I. Kwon and M. A. Bae, Xenobiotica, 41(10), 895-902 (2011). crossref(new window)