JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Predictive analysis on explosive performance of methylnitroimidzole derivatives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Analytical Science and Technology
  • Volume 28, Issue 5,  2015, pp.347-352
  • Publisher : The Korean Society of Analytical Science
  • DOI : 10.5806/AST.2015.28.5.347
 Title & Authors
Predictive analysis on explosive performance of methylnitroimidzole derivatives
Rim, One Kwon;
  PDF(new window)
 Abstract
Chemical properties such as heat of formation and density of methylnitroimidazole derivatives were predicted and analyzed by using density functional theory (DFT). Successive addition of energetic nitro groups into an imidazole ring increases both the heat of formation and the density. Using the chemical property values computed by DFT, explosive performance was analyzed with the Cheetah program, and compared with those of TNT, RDX, and HMX, which are currently used widely in military systems. When both C-J pressure and detonation velocity were used as explosive performance, methyldinitroimidazole derivatives show better performance than TNT, while methyltrinitroimidzole is almost close to RDX. Since methylnitroimidazole derivatives have a good merit, i.e. low melting point for melt loading, they are forecasted to be used widely in various military and civilian application.
 Keywords
Explosive performance;methylnitroimidazole;Heat of formation;Density;
 Language
Korean
 Cited by
1.
Two dimensional analysis between the performance and the sensitivity of methylnitroimidazole derivatives, Analytical Science and Technology, 2015, 28, 6, 430  crossref(new windwow)
 References
1.
P. W. Cooper, ‘Explosives Engineering’, VCH, New York, 1996.

2.
J. Akhavan, ‘The Chemistry of Explosives’, 2nd Ed., The Royal Society of Chemistry, Cambridge, UK, 2004.

3.
T. M. Klapötke, In 'High Energy Density Materials', T.M. Klapötke, Ed., pp. 85-121, Springer-Verlag: Berlin, Germany, 2007.

4.
S. G. Cho, Bull. Korean Chem. Soc., 32, 2319-2324 (2011). crossref(new window)

5.
L. Xiaohong, Z. Ruizhou and Z. Xianzhou, J. Hazard. Mater., 183, 622-631 (2010). crossref(new window)

6.
H. Gao and J. M. Shreeve, Chem. Rev., 111, 7377-7436 (2011). crossref(new window)

7.
S. G. Cho, ‘A Systematic Procedure to Predict Explosive Performance and Sensitivity of Novel High-Energy Molecules in ADD, ADD Method-1’ In ‘Handbook of Material Science Research’, p431, C. René, E. Turcotte, Eds., Nova Science Publishers, New York, 2010.

8.
M. J. Frisch et al., Gaussian 03, Revision D.02, Gaussian, Inc., Wallinford, CT, 2004.

9.
D. Habibollahzadeh, M. E. Grice, M. C. Concha, J. S. Murray and P. Politzer, J. Comput. Chem., 5, 654-658 (1995).

10.
J. S. Murray, T. Brinck and Politzer, Chem. Phys., 204, 289-299 (1996). crossref(new window)

11.
S. C. Cho and E. M. Goh, 'A Study on Generating a Database and Derving an Efficient Method to Predict Heats of Formation of High-Energy Molecules', Agency for Defense Development Report TEDC-519-021438, 2002.

12.
C. K. Kim, K. A Lee, K. H. Hyun, H. J. Park, I. Y. Kwack, C. K. Kim, H. W. Lee and B. S. Lee, J. Comput. Chem., 25, 2073-2079 (2004). crossref(new window)

13.
C. K. Kim, S. G. Cho, K. A Lee, C. K. Kim, H.-Y. Park, H. Zhang, H. W. Lee and B. S. Lee, J. Comput. Chem., 29, 1818-1824 (2008). crossref(new window)

14.
L. E. Fried, W. M. Howard and P. C. Souers, ‘Cheetah 2.0 User Manual’, Lawrence Livermore National Laboratory Report UCRL MA 117541 Rev. 5, 1998.

15.
X. Su, X. Cheng, C. Meng and X. Yuan, J. Hazard. Mater., 161, 551-558 (2009). crossref(new window)

16.
P. Ravi, G. M. Gore, S. P. Tewari and A. K. Skider, J. Energ. Mat., 29, 209-227 (2011) crossref(new window)