JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Analytical Science and Technology
  • Volume 29, Issue 1,  2016, pp.10-18
  • Publisher : The Korean Society of Analytical Science
  • DOI : 10.5806/AST.2016.29.1.10
 Title & Authors
Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells
Um, Su-Min; Jun, Yong-Woo; Kim, Kun-Hyung; Lee, Jin-A; Jang, Deok-Jin;
  PDF(new window)
 Abstract
Phosphodiesterase (PDE) plays an important role in cAMP-mediated signaling within cells. We previously showed that the long-form of Aplysia PDE4 (ApPDE4) was localized in the plasma membrane and the presynaptic terminal in Aplysia sensory neurons, and the 16 N-terminal amino acid was sufficient for this targeting process. In this study, we characterized the cellular localization of various ApPDE4 mutants. We first identified the roles of each amino acid within the group of 16 N-terminal amino acids of long-form ApPDE4. As a result, we were able to identify various mutants that were localized to both the plasma membrane and the Golgi complex, Golgi only, or both the endoplasmic reticulum (ER) and the Golgi complex. To examine the role of palmitoylation on the cellular localization of ApPDE4 mutants, 2-bromo palmitate (2-BR) was used as a treatment. As a result, in the presence of 2-BR, the plasma membrane targeting of many mutants was impaired, indicating that palmitoylation was involved in the plasma membrane targeting of the mutants. We also found that PI4P play crucial roles in the Golgi targeting of (N16,C3S/VV/G)-mRFP, L(N16,C3S/LFS/R)-mRFP, and L(N16,EPL/R)-mRFP.
 Keywords
Aplysia;phosphodiesteras 4;plasma membrane;Golgi complex;PI4P;palmitoylation;
 Language
Korean
 Cited by
 References
1.
Y. S. Lee, C. H. Bailey, E. R. Kandel and B. K. Kaang, Mol Brain, 1(1), 3 (2008). crossref(new window)

2.
E. R. Kandel, Mol. Brain, 5, 14 (2012). crossref(new window)

3.
W. Richter, F. S. Menniti, H. T. Zhang and M. Conti, Expert. Opin. Ther. Targets, 17(9), 1011-1027 (2013). crossref(new window)

4.
D. J. Jang, S. W. Park, J. A. Lee, C. Lee, Y. S. Chae, H. Park, M. J. Kim, S. L. Choi, N. Lee, H. Kim and B. K. Kaang, Learn. Mem., 17(9), 469-479 (2010). crossref(new window)

5.
D. J. Jang, J. A. Lee, Y. S. Chae and B. K. Kaang, Mol. Cells, 31(2), 175-180 (2011). crossref(new window)

6.
H. Park, J. A. Lee, C. Lee, M. J. Kim, D. J. Chang, H. Kim, S. H. Lee, Y. S. Lee and B. K. Kaang, J. Neurosci., 25(39), 9037-9045 (2005). crossref(new window)

7.
D. J. Jang, H. F. Kim, J. H. Sim, C. S. Lim and B. K. Kaang, Exp. Neurobiol., 24(3), 246-251 (2015). crossref(new window)

8.
K. H. Kim, Y. W. Jun, Y. Park, J. A. Lee, B. C. Suh, C. S. Lim, Y. S. Lee, B. K. Kaang and D. J. Jang, J. Biol. Chem., 289(37), 25797-25811 (2014). crossref(new window)

9.
G. Di Paolo and P. De Camilli, Nature, 443(7112), 651-657 (2006). crossref(new window)

10.
D. J. Jang, S. W. Park and B. K. Kaang, BMB Rep., 42(1), 1-5 (2009). crossref(new window)

11.
Y. W. Jun, S. Kim, K. H. Kim, J. A. Lee, C. S. Lim, I. Chang, B. C. Suh, B. K. Kaang and D. J. Jang, Lipids, 50(4), 427-436 (2015). crossref(new window)

12.
A. Godi, A. Di Campli, A. Konstantakopoulos, G. Di Tullio, D. R. Alessi, G. S. Kular, T. Daniele, P. Marra, J. M. Lucocq and M. A. De Matteis, Nat. Cell. Biol., 6(5), 393-404 (2004). crossref(new window)

13.
T. P. Levine and S. Munro, Curr. Biol., 12(9), 695-704 (2002).

14.
A. Roy and T. P. Levine, J. Biol. Chem., 279(43), 44683-44689 (2004). crossref(new window)

15.
K. M. Lee, S. K. Hwang and J. A. Lee, Exp. Neurobiol., 22(3), 133-142 (2013). crossref(new window)