Advanced SearchSearch Tips
A new nano-composite carbon ink for disposable dopamine biosensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Analytical Science and Technology
  • Volume 29, Issue 1,  2016, pp.35-42
  • Publisher : The Korean Society of Analytical Science
  • DOI : 10.5806/AST.2016.29.1.35
 Title & Authors
A new nano-composite carbon ink for disposable dopamine biosensors
Dinakaran, T.; Chang, S.-C.;
  PDF(new window)
A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.
reduced graphene oxide;nano-composite;screen printed carbon electrode;dopamine;tyrosinase;biosensor;
 Cited by
W. Schultz, Annu Rev Neurosci, 30, 259-288 (2007). crossref(new window)

M. Perry, Q. Li and R. T. Kennedy, Anal. Chim. Acta, 653(1), 1-22 (2009). crossref(new window)

F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau and B. Madea, Forensic Sci. Int., 113(1-3), 359-366 (2000). crossref(new window)

A. El-Beqqali, A. Kussak and M. Abdel-Rehim, J. Sep Sci., 30(3), 421-424 (2007). crossref(new window)

T. Yoshitake, J. Kehr, K. Todoroki, H. Nohta and M. Yamaguchi, Biomed. Chromatogr., 20(3), 267-281 (2006). crossref(new window)

A. Kankaanpaa, E. Meririnne, K. Ariniemi and T. Seppala, J. Chromatogr. B, 753(2), 413-419 (2001). crossref(new window)

L. Zhang, N. Teshima, T. Hasebe, M. Kurihara and T. Kawashima, Talanta, 50(3), 677-683 (1999). crossref(new window)

K. Jackowska and P. Krysinski, Anal. Bioanal Chem., 405(11), 3753-3771 (2013). crossref(new window)

D. L. Robinson, A. Hermans, A. T. Seipel and R. M. Wightman, Chem. Rev., 108(7), 2554-2584 (2008). crossref(new window)

S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. Lai and H. He, Anal. Chem., 79(6), 2583-2587 (2007). crossref(new window)

C. F. Tang, S. A. Kumar and S. M. Chen, Anal. Biochem, 380(2), 174-183 (2008). crossref(new window)

S. Ku, S. Palanisamy and S. M. Chen, J. Colloid Interface Sci., 411, 182-186 (2013). crossref(new window)

Y. L. Zhou, R. H. Tian and J. F. Zhi, Biosens Bioelectron, 22(6), 822-828 (2007). crossref(new window)

J. Huang, Y. Liu, H. Hou and T. You, Biosens Bioelectron, 24(4), 632-637 (2008). crossref(new window)

K. Min and Y. J. Yoo, Talanta, 80(2), 1007-1011 (2009). crossref(new window)

M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 81(14), 5603-5613 (2009). crossref(new window)

M. Moreno, A. S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, M. C. Rodriguez, Y. Jalit and G. A. Rivas, Talanta, 80(5), 2149-2156 (2010). crossref(new window)

K. S. Prasad, G. Muthuraman and J. M. Zen, Electrochem. Comm., 10(4), 559-563 (2008). crossref(new window)

J. Ping, J. Wu, Y. Wang and Y. Ying, Biosens Bioelectron, 34(1), 70-76 (2012). crossref(new window)

A. Salimi, V. Alizadeh and R. G. Compton, Analytical Sci., 21(11), 1275-1280 (2005). crossref(new window)

T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens Bioelectron, 26(12), 4637-4648 (2011). crossref(new window)

Z. Liu, B. Liu, J. Kong and J. Deng, Anal. Chem., 72(19), 4707-4712 (2000). crossref(new window)

Y. C. Tsai and C. C. Chiu, Sensor. Actuat. B-Chem., 125(1), 10-16 (2007). crossref(new window)

E. S. Forzani, G. A. Rivas and V. M. Solis, J. Electroanal. Chem., 435(1-2), 77-84 (1997). crossref(new window)

S. Tembe, B. S. Kubal, M. Karve and S. F. D'Souza, Anal. Chim. Acta, 612(2), 212-217 (2008). crossref(new window)

Y. Wang, X. Zhang, Y. Chen, H. Xu, Y. Tan and S. Wang, Am. J. Biomed. Sci., 2(3), 209-216 (2010).

S. C. Chang, K. Rawson, C. J. McNeil, Biosens Bioelectron, 17(11-12), 1015-1023 (2002). crossref(new window)

M. R. Montereali, L. Della Seta, W. Vastarella and R. Pilloton, J. Mol. Catal. B: Enzym., 64, 189-194 (2010). crossref(new window)

R. Solna, E. Dock, A. Christenson, M. Winther-Nielsen, C. Carlsson, J. Emneus, T. Ruzgas and P. Skladal, Anal. Chim. Acta, 528(1), 9-19 (2005). crossref(new window)

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80(6), 1339-1339 (1958). crossref(new window)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45(7), 1558-1565 (2007). crossref(new window)

Y. Wang, J. Liu, L. Liu and D. D. Sun, Nanoscale Res Lett., 6(1), 241 (2011). crossref(new window)

W. Qin and X. Li, J. Phys. Chem. C, 114(44), 19009-19015 (2010). crossref(new window)

T. E. Barman, 'Enzyme Handbook', Vol. 1, Springer, New york, 1969.

J. Njagi, M. M. Chernov, J. C. Leiter, S. Andreescu, Anal. Chem., 82(3), 989-996 (2010). crossref(new window)