Advanced SearchSearch Tips
Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Composites Research
  • Volume 29, Issue 2,  2016, pp.79-84
  • Publisher : The Korean Society for Composite Materials
  • DOI : 10.7234/composres.2016.29.2.079
 Title & Authors
Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives
Shin, Pyeong-Su; Kim, Jong-Hyun; Choi, Jin-Yeong; Kwon, Dong-Jun; Lee, Sang-Il; Park, Joung-Man;
  PDF(new window)
An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.
Interface;Acrylic;Epoxy resin;Fatigue strength;Adhesive;
 Cited by
Johnson, S., "Thermoelastic Stress Analysis for Detecting and Characterizing Dtatic Damage Initiation in Composite Lap Shear Joints," Composites: Part B, Vol. 56, 2014, pp. 740-748. crossref(new window)

Almansour, A., Maillet, E., Ramasamy, S., and Morscher, G.N., "Effect of Fiber Content on Single Tow SiC Minicomposite Mechanical and Damage Properties using Acoustic Emission," Journal of the European Ceramic Society, Vol. 35, 2015, pp. 3389-3399. crossref(new window)

Njuhovic, E., Brau, M., Wolff-Fabris, F., Starzynski, K., and Alstadt, V., "Identification of Failure Mechanisms of Metallised Glass Fibre Reinforced Composites under Tensile Loading using Acoustic Emission Analysis," Composites Part B, Vol. 81, 2015, pp. 1-13. crossref(new window)

Lee, Y.H., Lim, D.W., Choi, J.H., Kweon, J.H., and Yoon, M.K., "Failure Load Evaluation and Prediction of Hybrid Composite Double Lap Joints," Composites Structures, 2010, Vol. 92, pp. 2916-2926. crossref(new window)

Kim, H.C. and Lee, J.J., "The Effects of Interfacial Adhesion Strength on the Characteristics of an Aluminum/CFRP Hybrid Beam under Transverse Quasi-Static Loading," Composites: Part B, Vol. 67, 2014, pp. 595-606. crossref(new window)

Kim, C.H., Choi, J.H., and Kweon, J.H., "Defect Detection in Adhesive Joints using the Impedance Method," Composite Structures, Vol. 120, 2015, pp. 183-188. crossref(new window)

Maglhaes, A.G. and Moura, M.F.S.F., "Application of Acoustic Emission to Study Creep Behavior of Composite Bonded Lap Shear Joints," NDT&E International, Vol. 38, 2005, pp. 45-52. crossref(new window)

Okayasu, M., Yamazaki, T., Ota, O., Ogi, K., and Shiraishi, T., "Mechanical Properties and Failure Characteristics of a Recycled CFRP under Tensile and Cyclic Loading," International Journal of Fatigue, Vol. 55, 2013, pp. 257-267. crossref(new window)

Schizas, C., Stutz, S., and Coric D., Monitoring of non-Homogeneous Strains in Composites with Embedded Wavelength Multiplexed Fiber Bragg Gratings: A Methodological Study," Composite Structures, Vol. 94, 2012, pp. 987-994. crossref(new window)

Gigliotti, M., Lafarie-Frenot, M.C., Lin, Y., and Pugliese, A., "Electro-Mechanical Fatigue of CFRP Laminates for Aircraft Applications," Composite Structures, Vol. 127, 2015, pp. 436-449. crossref(new window)

Haj, A.R. and Elhajjar, Rani, "An Infrared Thermoelastic Stress Analysis Investigation of Single Lap Shear Joints in Continuous and Woven Carbon/Fiber Epoxy Composites," International Journal of Adhesion & Adhesives, Vol. 48, 2014, pp. 210-216. crossref(new window)

Mactabi, R., Rosca, I.D., and Hoa, S.V., "Monitoring the Integrity of Adhesive Joints during Fatigue Loading Using Carbon Nanotubes," Composites Science and Technology, Vol. 78, 2013, pp. 1-9. crossref(new window)

Lim, A.S., Melrose, Z.R., Thostenson, E.T., and Cheu, T.W., "Damage Sensing of Adhesively-Bonded Hybrid Composite/Steel Joints using Carbon Nanotubes," Composites Science and Technology, Vol. 71, 2011, pp. 1183-1189. crossref(new window)

Matsuzaki, R., Shibata, M., and Todoroki, A., "Reinforcing an Aluminum/GFRP co-cured Single Lap Joint using Inter-Adherend Fiber," Composites Part A: Applied Science and Manufacturing, Vol. 39, 2008, pp. 786-795. crossref(new window)

Jang, J.H., Yi, J.W., Lee, W.O., Lee, H.G., Um, M.K., Kim, J.B., and Byun, J.H., "Dispersion and Property Evaluation of Nanocompositesby Aspect Ratio of MWCNT," Journal of the Korean Society for Composite Materials, Vol. 23, No. 3, 2010, pp. 58-63. crossref(new window)

Kwon, D.J., Wang, Z.J., Kim, J.J., Jang, K.W., and Park, J.M., "Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement," Journal of the Korean Society for Composite Materials, Vol. 26, No. 6, 2013, pp. 337-342.

Kwon, D.J, Wang, Z.J., Choi, J.Y., Lee, E.S., and Park, J.M., "Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating," Journal of the Korean Society for Composites Materials, Vol. 27, No. 3, 2014, pp. 109-114.