Advanced SearchSearch Tips
Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator
Lee, No Ho; Shin, Jae Rok; Yoo, Ji Een; You, Dong Hun; Koo, Bon-Ryul; Lee, Sung Woo; Ahn, Hyo-Jin; Choi, Byung Joon;
  PDF(new window)
The triboelectric property of a material is important to improve an efficiency of triboelectric generator (TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semiconducting which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Vertical contact mode is utilized to evaluate the TEG efficiency. thin film is deposited by atomic layer deposition on bare Si wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Triboelectric series are determined by comparing the polarity of output voltage of 2 samples among , PET, and glass. In conclusion, , as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electron and PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore, the -PET combination shows the highest TEG efficiency.
Triboelectric generator;Triboelectric series;Energy harvesting;;
 Cited by
Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition, Electronic Materials Letters, 2017, 13, 4, 318  crossref(new windwow)
Z. L. Wang, G. Zhu, Y. Yang, S. Wang and C. Pan: Mater. Today, 15 (2012) 532. crossref(new window)

Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu and Z. L. Wang: ACS Nano, 7 (2013) 9213. crossref(new window)

F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang: Nano Lett., 12 (2012) 3109. crossref(new window)

S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu and Z. L. Wang: Nano Lett., 13 (2013) 2226. crossref(new window)

W. Yang, J. Chen, G. Zhu, X. Wen, P. Bai, Y. Su, Y. Lin and Z. Wang: Nano Res., 6 (2013) 880. crossref(new window)

Y. H. Ko, G. Nagaraju, S. H. Lee and J. S. Yu: ACS Appl. Mater. Interfaces, 6 (2014) 6631. crossref(new window)

W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim and C.-Y. Kang: Sci. Rep., 5 (2015) 9309. crossref(new window)

A. F. Diaz and R. M. Felix-Navarro: J. Electrostat., 62 (2004) 277. crossref(new window)

N. Murayama, N. Izu, W. Shin and I. Matsubara: Journal Ceram. Soc. Japan, 113, (2005) 330. crossref(new window)

Y.-I. Lee and Y.-H. Choa: J. Korean Powder Metall. Inst., 19 (2012) 271 (Korean). crossref(new window)

T. Feng, A. K. Ghosh and C. Fishman: Appl. Phys. Lett., 35 (1979) 266. crossref(new window)

W.-S. Choi: Trans. Electr. Electron. Mater., 10 (2009) 200. crossref(new window)

X. Du and S. M. George: Sens. Actuators B, 135 (2008) 152. crossref(new window)

C. W. Cho, J. H. Lee, D. H. Riu and C. Y. Kim: Jpn. J. Appl. Phys., 51 (2012) 045001. crossref(new window)

Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike and K. Natukawa: Sens. Actuators B, 79 (2001) 175. crossref(new window)

Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang and T. H. Wang: Appl. Phys. Lett., 88 (2006) 083105. crossref(new window)

Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park and J.-H. Lee: Nanotechnology, 19 (2008) 095508. crossref(new window)