Advanced SearchSearch Tips
Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate
Baek, Seong-Ho; Park, Il-Kyu;
  PDF(new window)
We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of . The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.
ZnO nanorod;Hydrothermal;Cu foil;Nanogenerator;
 Cited by
Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications, Journal of Korean Powder Metallurgy Institute, 2015, 22, 6, 391  crossref(new windwow)
Z. L. Wang: Sci. Am., 298 (2008) 82.

Z. L. Wang: Nano Today, 5 (2010) 512. crossref(new window)

Z. L. Wang and J. H. Song: Science, 312 (2006) 242. crossref(new window)

G. Zhu, R. Yang, S. Wang and Z. L. Wang: Nano Lett., 10 (2010) 3151. crossref(new window)

Y. Gao and Z. L. Wang: Nano Lett., 7 (2007) 2499. crossref(new window)

S. Lee, S.-H. Bae, L. Lin, Y. Yang, C. Park, S.-W. Kim, S. N. Cha, H. Kim, Y. J. Park and Z. L. Wang: Adv. Funct. Mater., 23 (2013) 2445. crossref(new window)

Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou and Z. L. Wang: Energy Environ. Sci., 6 (2013) 1744. crossref(new window)

Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang and Z. L. Wang: Nano Lett., 13 (2013) 803. crossref(new window)

G. H. Nam, S. H. Baek, C. H. Cho and I. K. Park: Nanoscale, 6 (2014) 11653. crossref(new window)

D. Y. Jung, S. H. Baek, Md. R. Hasan and I. K. Park: J. All. Comp., 641 (2015) 163. crossref(new window)

Y.-I. Jung, B.-Y. Noh, Y.-S. Lee, S. H. Baek, J. H. Kim and I. K. Park: Nanoscale Res. Lett., 7 (2012) 1. crossref(new window)

D. Kim, K. Y. Lee, M. K. Gupta, S. Majumder and S.-W. Kim: Adv. Funct. Mater., 24 (2014) 6949. crossref(new window)

George H. Chan, Jing Zhao, Erin M. Hicks, George C. Schatz and Richard P. Van Duyne: Nano Lett., 7 (2007) 1947. crossref(new window)

Md. R. Hasan, S.-H. Baek, G. S. Sung, J. H. Kim and I. K. Park: ACS Appl. Mater. Inter., 7 (2015) 5768. crossref(new window)

X. Chen, S. Xu, N. Yao and Y. Shi: Nano Lett., 10 (2010) 2133. crossref(new window)