JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni
Kwon, Na-Yeon; Suk, Myung-Jin; Oh, Sung-Tag;
  PDF(new window)
 Abstract
The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at . Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at and sintering at for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.
 Keywords
Porous Cu-Ni;Freeze-drying process;Sublimable vehicle composition;Pore structure;
 Language
Korean
 Cited by
 References
1.
M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).

2.
J. Banhart: Prog. Mater. Sci., 46 (2001) 559. crossref(new window)

3.
T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. crossref(new window)

4.
H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. crossref(new window)

5.
T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. crossref(new window)

6.
K. Araki and J. W. Halloran: J. Am Ceram. Soc., 88 (2005) 1108. crossref(new window)

7.
S.-T. Oh, W. Lee, S.-Y. Chang and M.-J. Suk: Res. Chem. Interm., 40 (2014) 2495. crossref(new window)

8.
B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537. crossref(new window)

9.
B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am Ceram. Soc., 90 (2007) 1753. crossref(new window)

10.
N.-Y. Kwon and S.-T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 259 (Korean). crossref(new window)

11.
S.-T. Oh, Y.D. Kim and M.-J. Suk: Mater. Lett., 139 (2015) 268. crossref(new window)

12.
K. Araki and J.W. Halloran: J. Am Ceram. Soc., 87 (2004) 2014.

13.
P.M. Robinson, H. J. Rosell and H. G. Scott: Mol. Cryst. Liq. Cryst., 10 (1970) 61. crossref(new window)

14.
M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141. crossref(new window)

15.
G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709. crossref(new window)

16.
B. Jankovi , B. Adnadevi and S. Mentus: Thermoch. Acta, 456 (2007) 48. crossref(new window)

17.
S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. crossref(new window)

18.
L. M. Fabietti and R. Trivedi: Metall. Trans. A, 22A (1991) 1249.