JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications
Baek, Seong-Ho; Park, Il-Kyu;
  PDF(new window)
 Abstract
We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate and hexamine as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.
 Keywords
ZnO nanorod;Polystyrene;Hybrid nanostructure;Hydrothermal method;
 Language
Korean
 Cited by
1.
Rapid consolidation of nanostuctured WC-FeAl3 by pulsed current activated heating and its mechanical properties, International Journal of Refractory Metals and Hard Materials, 2016  crossref(new windwow)
2.
Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties, Applied Surface Science, 2016  crossref(new windwow)
 References
1.
D. C. Look: Mat. Sci. Eng. B. Adv., 80 (2001) 383. crossref(new window)

2.
S. Xu and Z. L. Wang: Nano Research, 4 (2011) 1013. crossref(new window)

3.
S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331 (Korean). crossref(new window)

4.
Z. L. Wang and J. H. Song: Science, 312 (2006) 242. crossref(new window)

5.
Z. L. Wang: Sci. Am., 298 (2008) 82.

6.
Y. S. Lee, Y. I. Jung, B. Y. Noh and I. K. Park: Appl. Phys. Express, 4 (2011) 112101. crossref(new window)

7.
K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim and G. Y. Jung: Adv. Mater., 24 (2012) 792. crossref(new window)

8.
A. Umar, S. H. Kim and Y. B. Hahn: Superlattices Microstruct., 39 (2006) 145. crossref(new window)

9.
Y. H. Ko and J. S. Yu: Opt. Express, 19 (2010) 297.

10.
Md R. Hasan, S. H. Baek, K. S. Seong, J. H. Kim and I. K. Park: ACS Appl. Mater. Interfaces, 7 (2015) 5768. crossref(new window)

11.
Y. Yang, H. Lai, C. Tao and H. Yang: J. Mater. Sci. Mater. Electron., 21 (2010) 173.

12.
Y.-I. Jung, B.-Y. Noh, Y.-S. Lee, S. H. Baek, J. H. Kim and I. K. Park: Nanoscale Res. Lett., 7 (2012) 1. crossref(new window)