Advanced SearchSearch Tips
Fabrication of Silver Flake Powder by the Mechanical Milling Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Silver Flake Powder by the Mechanical Milling Process
Jeong, Hae-Young; Lee, Gil-Geun;
  PDF(new window)
This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.
Flake powder;Milling;Ball collision;Elastic deformation;
 Cited by
J. Oprosky and D. Stotka: USA, US 5,346,651 (1993).

V. Paneccasio and M. P. Chasse: USA, US 6,013,203 (1998).

Yi Li, D. Lu and C. P. Wong: Electrical Conductive Adhesives with Nanotechnologies, Springer, NewYork (2010) 121.

H. W. Cui, A. Kowalczyk, D. S. Li and Q. Fan: Int. J. Adhes. Adhes., 44 (2013) 220. crossref(new window)

E. Sancaktar and N. Dilsiz: J. Adhes. Sci. Technol., 13 (1999) 679. crossref(new window)

E. Suhir, Y. C. Lee and C. P. Wong: Micro- and Opto- Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging Vol. 1 Chapter 21, Springer, New York (2007) 571.

W. Songping: J. Mater. Sci. Mater. El., 18 (2007) 447.

P. R. Santhanam, A. Ermoline and E. L. Dreizin: Chem. Eng. Sci., 101 (2013) 366. crossref(new window)

P. R. Santhanam and E. L. Dreizin: Powder. Technol., 221 (2012) 403. crossref(new window)

D. W. Lee, B. K. Kim, G. G. Lee and G. H. Ha: J. Korean Powder Metall. Inst., 3 (1996) 159 (Korean).

G. G. Lee, D. W. Lee, G. H. Ha and B. K. Kim: J. Jpn. Soc. Powd. Met., 43 (1996) 1253. crossref(new window)

G. G. Lee and H. Y. Jeong: J. Korean Powder Metall. Inst., 21 (2014) 307 (Korean). crossref(new window)

S. P. Timoshenko and J. N. Goodier: Theory of Elasticity, 3rd Ed., McGraw-Hill, NewYork (1970) 420.

K. S. Venkataraman and K. S. Narayanan: Powder. Technol., 96 (1998) 190. crossref(new window)

R. M. German: Powder Metallurgy and Particulate Materials Processing, The Processes, Materials, Products, Properties, and Applications, Metal Powder Industries Federation, New Jersey (2005) 186.

X. H. Yang, J. X. Bai, H. B. Yan, J. J. Kuang, T. J. Lu and T. Kim: Transp. Porous. Med., 102 (2014) 403. crossref(new window)

D. R. Maurice and T. H. Courtney: Metall. Trans. A, 21A (1990) 289.