Advanced SearchSearch Tips
Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes
Cha, Hyeongcheol; Nah, Yoon-Chae;
  PDF(new window)
We demonstrate the electrochromic properties of nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous nanotubes annealed at have the largest oxidation/reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologen-anchored nanotubes show superior electrochromic properties compared to pristine nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of nanotubes.
nanotubes;Anodization;Electrochromism;Heat treatment;Viologen;
 Cited by
P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky: Electrochromism: Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim (2007) 22.

S. K. Deb: Sol. Energy Mater. Sol. Cells, 92 (2008) 245. crossref(new window)

T.-H. Kim and Y.-C. Nah: J. Korean Powder Metall. Inst., 22 (2015) 309. crossref(new window)

Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777. crossref(new window)

R. J. Mortimer, A. L. Dyer and J. R. Reynolds: Displays, 27 (2006) 2. crossref(new window)

Y.-C. Nah, K.-S. Ahn, K.-Y. Cho, J.-Y. Park, H.-S. Shim, Y. M. Lee, J.-K. Park and Y.-E. Sung: J. Electrochem. Soc., 152 (2005) H201. crossref(new window)

Y.-C. Nah, K.-S. Ahn and Y.-E. Sung: Solid State Ionics, 165 (2003) 229. crossref(new window)

J. H. Kim, C.-S. Park, H. D. Park, H.-S. Tae and S.-H. Lee: J. Nanosci. Nanotechnol., 13 (2013) 3270. crossref(new window)

T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Elctrochem. Commun., 57 (2015) 65. crossref(new window)

M.-S. Fan, S.-Y. Kao, T.-H. Chang, R. Vittal and K.-C. Ho: Sol. Energy Mater. Sol. Cells, 145 (2016) 35. crossref(new window)

A. Verma, S. B. Samanta, A. K. Bakhshi and S. A. Agnihotry: Sol. Energy Mater. Sol. Cells, 88 (2005) 47. crossref(new window)

M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad and S. A. Agnihotry: J. Electrochem. Soc., 153 (2006) C365. crossref(new window)

J. R. V. Garcia, E. M. L. Ugalde, F. H. Santiago and J. M. H. Lopez: J. Nanosci. Nanotech., 8 (2008) 2703. crossref(new window)

S.-M. Wang, L. Liu, W.-L. Chen, Z.-M. Zhang, Z.-M. Su and E.-B. Wang: J. Mater. Chem. A, 1 (2013) 216. crossref(new window)

K. Lee, A. Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385. crossref(new window)

Y.-C. Nah, I. Paramasivam and P. Schmuki: Chem. Phys. Chem., 11 (2010) 2698. crossref(new window)

R. Kirchgeorg, S. Berger and P. Schmuki: Chem. Commun., 47 (2011) 1000. crossref(new window)

J. Choi, S.-H. Park, Y. S. Kwon, J. Lim, I. Y. Song and T. Park: Chem. Commun., 48 (2012) 8748. crossref(new window)

M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff and K. Sopian: Int. J. Electrochem. Sci., 7 (2012) 4871.

Z. Wang and X. Hu: Thin Solid Films, 352 (1999) 62. crossref(new window)

A. Verma and S. A. Agnihotry: Electrochim. Acta, 52 (2007) 2701. crossref(new window)

R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmaurice, Sol. Energy Mater. Sol. Cells, 57 (1999) 107. crossref(new window)

X. W. Sun and J. X. Wang: Nano Lett., 8 (2008) 1884. crossref(new window)