JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes
Cha, Hyeongcheol; Nah, Yoon-Chae;
  PDF(new window)
 Abstract
We demonstrate the electrochromic properties of nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous nanotubes annealed at have the largest oxidation/reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologen-anchored nanotubes show superior electrochromic properties compared to pristine nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of nanotubes.
 Keywords
nanotubes;Anodization;Electrochromism;Heat treatment;Viologen;
 Language
Korean
 Cited by
 References
1.
P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky: Electrochromism: Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim (2007) 22.

2.
S. K. Deb: Sol. Energy Mater. Sol. Cells, 92 (2008) 245.

3.
T.-H. Kim and Y.-C. Nah: J. Korean Powder Metall. Inst., 22 (2015) 309.

4.
Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777.

5.
R. J. Mortimer, A. L. Dyer and J. R. Reynolds: Displays, 27 (2006) 2.

6.
Y.-C. Nah, K.-S. Ahn, K.-Y. Cho, J.-Y. Park, H.-S. Shim, Y. M. Lee, J.-K. Park and Y.-E. Sung: J. Electrochem. Soc., 152 (2005) H201.

7.
Y.-C. Nah, K.-S. Ahn and Y.-E. Sung: Solid State Ionics, 165 (2003) 229.

8.
J. H. Kim, C.-S. Park, H. D. Park, H.-S. Tae and S.-H. Lee: J. Nanosci. Nanotechnol., 13 (2013) 3270.

9.
T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Elctrochem. Commun., 57 (2015) 65.

10.
M.-S. Fan, S.-Y. Kao, T.-H. Chang, R. Vittal and K.-C. Ho: Sol. Energy Mater. Sol. Cells, 145 (2016) 35.

11.
A. Verma, S. B. Samanta, A. K. Bakhshi and S. A. Agnihotry: Sol. Energy Mater. Sol. Cells, 88 (2005) 47.

12.
M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad and S. A. Agnihotry: J. Electrochem. Soc., 153 (2006) C365.

13.
J. R. V. Garcia, E. M. L. Ugalde, F. H. Santiago and J. M. H. Lopez: J. Nanosci. Nanotech., 8 (2008) 2703.

14.
S.-M. Wang, L. Liu, W.-L. Chen, Z.-M. Zhang, Z.-M. Su and E.-B. Wang: J. Mater. Chem. A, 1 (2013) 216.

15.
K. Lee, A. Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385.

16.
Y.-C. Nah, I. Paramasivam and P. Schmuki: Chem. Phys. Chem., 11 (2010) 2698.

17.
R. Kirchgeorg, S. Berger and P. Schmuki: Chem. Commun., 47 (2011) 1000.

18.
J. Choi, S.-H. Park, Y. S. Kwon, J. Lim, I. Y. Song and T. Park: Chem. Commun., 48 (2012) 8748.

19.
M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff and K. Sopian: Int. J. Electrochem. Sci., 7 (2012) 4871.

20.
Z. Wang and X. Hu: Thin Solid Films, 352 (1999) 62.

21.
A. Verma and S. A. Agnihotry: Electrochim. Acta, 52 (2007) 2701.

22.
R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmaurice, Sol. Energy Mater. Sol. Cells, 57 (1999) 107.

23.
X. W. Sun and J. X. Wang: Nano Lett., 8 (2008) 1884.