JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying
Lwin, May Likha; Yoon, Sang-min; Madavali, Babu; Lee, Chul-Hee; Hong, Soon-Jik;
  PDF(new window)
 Abstract
P-type ternary alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.
 Keywords
alloys;Mechanical alloying;Spark plasma sintering;Thermoelectric properties;
 Language
English
 Cited by
1.
Mechanical and thermoelectric properties of Bi2−xSbxTe3 prepared by using encapsulated melting and hot pressing, Journal of the Korean Physical Society, 2016, 69, 8, 1328  crossref(new windwow)
 References
1.
G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. crossref(new window)

2.
M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043. crossref(new window)

3.
L.E. Bell: Science, 321 (2008) 1457. crossref(new window)

4.
T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge: Science, 297 (2002) 2229. crossref(new window)

5.
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634. crossref(new window)

6.
C. H. Lim, D. C. Cho, Y. S. Lee and C. H. Lee: J. Korean Phys. Soc., 46 (2005) 995.

7.
R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn: Nature, 413 (2001) 597. crossref(new window)

8.
B. Madavali, H.-S. Kim and S.-J. Hong: J. Electron. Mater., 43 (2014) 2390. crossref(new window)

9.
H.-S. Kim and S.-J. Hong: J. Alloys Compd., 586 (2014) S428. crossref(new window)

10.
T. Zhang, Q. S. Zhang, J. Jiang, Z. Xiong, J. M. Chen, Y. L. Zhang, W. Li and G. J. Xu: Appl. Phys. Lett., 98 (2011) 022104. crossref(new window)

11.
Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580. crossref(new window)

12.
S. Jimenez, J. G. Pereza, T. M. Tritt, S. Zhub, J. L. S. Sancheza, J.-M. Juareza and O. Lopez: Energy Convers. Manage., 87 (2014) 868. crossref(new window)

13.
Z.-Y. Li, M. Zou and J.-F. Li: J. Alloys Compd., 549 (2013) 319. crossref(new window)

14.
H. Li, H. Jing, Y. Han, G.-Q. Lu and L. Xu: Intermetallics, 43 (2013) 16. crossref(new window)

15.
M. H. Bhuiyan, T.-S. Kim, J. M. Koo and S.-J. Hong: J. Alloys Compd., 509 (2011) 1722. crossref(new window)

16.
X. A. Fan, J. Y. Yang, R. G. Chen, W. Zhu and S. Q. Bao: Mater. Sci. Eng. A, 438 (2006) 190.