Advanced SearchSearch Tips
Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material
Rimal, Pradip; Yoon, Sang-Min; Kim, Eun-Bin; Lee, Chul-Hee; Hong, Soon-Jik;
  PDF(new window)
The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at . Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.
n-type ;Gas atomization;Hydrogen reduction;Thermoelectric properties;
 Cited by
D. M. Rowe: CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995.

G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. crossref(new window)

Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357. crossref(new window)

L. D. Zhao, B.-P. Zhang, W. S. Liu, H. L. Zhang and J.-F. Li: J. Alloys Compd., 467 (2009) 91. crossref(new window)

K. T. Kim, I. Son and G. H. Ha: J. Korean Powder Metall. Inst., 20 (2013) 345. crossref(new window)

C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis: Adv. Mater., 22 (2010) 3970. crossref(new window)

A. Hruban, A. Materna, W. Dalecki, G. Strzelecka, M. Piersa, E. J.-Wegner, R. Diduszko, M. Romaniec and W. Orlowski: Acta Phys. Pol. A, 120 (2011) 950. crossref(new window)

J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang: Mater. Sci. Eng. B, 117 (2005) 334. crossref(new window)

C. H. Lim, D. C. Cho, Y. S. Lee and C. H. Lee: J. Korean Phys. Soc., 46 (2005) 995.

H. P. Ha, Y. J. Oh, D. B. Hyun and E. P. Yoon: Int. J. Soc. Mater. Eng. Resour., 10 (2002) 130. crossref(new window)

C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou and J.-R. Ku: J. Alloys Compd., 496 (2010) 687. crossref(new window)

H.-S. Kim and S.-J. Hong: J. Alloys Compd., 586 (2014) S428. crossref(new window)

S.-J. Hong and B.-S. Chun: Mater. Res. Bull., 38 (2003) 599. crossref(new window)

L. D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou and W. S. Liu: Physica B Condens. Matter, 400 (2007) 11. crossref(new window)

D. H. Kim, C. Kim, S. H. Heo and H. Kim: Acta Mater., 59 (2011) 405. crossref(new window)

S.-J. Hong, Y.-S. Lee, J.-W. Byeon and B.-S. Chun: J. Alloys Compd., 414 (2006) 146. crossref(new window)

F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang and L. Chen: J. Alloys Compd., 509 (2011) 4769. crossref(new window)

C.-H. Lee, M. F. Kilicaslan, B. Madavali and S.-J. Hong: Res. Chem. Intermed., 40 (2014) 2543. crossref(new window)

S.-J. Hong and B.-S. Chun: Mater. Sci. Eng. A, 356 (2003) 345. crossref(new window)