JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres
Choi, Woonghee; Park, Se-Ryen; Kang, Chan Hyoung;
  PDF(new window)
 Abstract
As precursors of cathode materials for lithium ion batteries, powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of in air or nitrogen ambient. Calcination of the precursors with for 8 h at in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as . Regardless of the atmosphere, the final powders exhibit the XRD patterns of (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.
 Keywords
Co-precipitation;Precursor;Cathode materials;Charge/discharge capacity;Lithium ion battery;
 Language
Korean
 Cited by
 References
1.
A. Mersman and M. Kind: Chem. Eng. Technol., 11 (1988) 264. crossref(new window)

2.
S. Jouanneau, K. W. Eberman, L. J. Krause and J. R. Dahn: J. Electrochem. Soc., 150 (2003) A1637. crossref(new window)

3.
M.-H. Lee, Y.-J. Kang, S.-T. Myung and Y.-K. Sun: Electrochim. Acta, 50 (2004) 939. crossref(new window)

4.
A. van Bommel and J. R. Dahn: J. Electrochem. Soc., 156 (2009) A362. crossref(new window)

5.
A. van Bommel and J. R. Dahn: Chem. Mater., 21 (2009) 1500. crossref(new window)

6.
Y.-K. Sun, B.-R. Lee, H.-J. Noh, H. Wu, S.-T. Myung and K. Amine: J. Mater. Chem., 21 (2011) 10108. crossref(new window)

7.
D. Kang, N. Arailym, J. E. Chae and S.-S. Kim: J. Korean Electrochem. Soc., 16 (2013) 191 (Korean). crossref(new window)

8.
S.-H. Park, S.-H. Kang, I. Belharouak, Y. K. Sun and K. Amine: J. Power Sources 177 (2008) 177. crossref(new window)

9.
D. Wang, I. Belharouak, G. M. Koenig Jr., G. Zhou and K. Amine: J. Mater. Chem., 21 (2011) 9290. crossref(new window)

10.
K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X, Wang, Z. Xu and Q. Wu: Electrochim. Acta, 75 (2012) 393. crossref(new window)

11.
Z. Xu, L. Xiao, F. Wang, K. Wu, L. Zhao, M.-R. Li, H.-L. Zhang, Q. Wu and J. Wang: J. Power Sources, 248 (2014) 180. crossref(new window)

12.
A. Rougier, P. Gravereau and C. Delmas: J. Electrochem. Soc., 143 (1996) 1168. crossref(new window)

13.
S. W. Oh, S. H. Park, C.-W. Park and Y.-K. Sun: Solid State Ionics, 171 (2004) 167. crossref(new window)

14.
D. D. MacNeil, Z. Lu and J. R. Dahn: J. Electrochem. Soc., 149 (2002) A1332. crossref(new window)

15.
T. Ohzuku, A. Ueda and M. Nagayama: J. Electrochem. Soc., 140 (1993) 1862. crossref(new window)

16.
Z. Lu, D. D. MacNeil and J. R. Dahn: Electrochem. Solid- State Lett., 149 (2002) A778.

17.
Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas and J. R. Dahn: J. Electrochem. Soc., 149 (2002) A778. crossref(new window)

18.
F. Weill, N. Tran, L. Croguennec and C. Delmas: J. Power Sources, 172 (2007) 893. crossref(new window)