Advanced SearchSearch Tips
Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor
Park, Ji Young; Jeong, Da-Woon; Ju, Won; Seo, Han Wook; Cho, Yong-Ho; Kim, Bum Sung;
  PDF(new window)
High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave () to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.
Quantum Dots;Core/Shell;Micro-Reactor;Passivation;Photoluminescence;
 Cited by
V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. crossref(new window)

M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos: Science, 281 (1998) 2013. crossref(new window)

S. K. Poznyak, D. V. Talapin, E. V. Shevchenko and H. Weller: Nano Lett., 4 (2004) 693. crossref(new window)

M. G. Bawendi, M. L. Steigerwald and L. E. Brus: Annu. Rev. Phys. Chem., 41 (1990) 477. crossref(new window)

J. Qiu, J. M. Depuydt, H. Cheng and M. A. Haase: Appl. Phys. Lett., 59 (1991) 2992. crossref(new window)

M. Kumar, M. K. Sharan and M. Sharon: Thin Solid Films, 312 (1998) 139. crossref(new window)

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463. crossref(new window)

N. S. A. Eom, T. S. Kim, Y. H. Choa and B. S. Kim: Kor. J. Mater. Res., 22 (2012) 140 (Korean). crossref(new window)

N. S. A. Eom, T.-S. Kim, Y.-H. Choa and B. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 442 (Korean). crossref(new window)

D.-W. Jeong, B. Swain, C. J. Lee, T.-Y. Seong, K.-T. Park and B. S. Kim: Int. J. Appl. Ceram. Technol., 13 (2015) 223.

Y.-T. Kwon, N. S. A. Nu, Y.-M. Choi, B.-S. Kim, T.-S. Kim, C.-G. Lee, K.-J. Lee and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636. crossref(new window)