JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite
Kwon, Hansang; Park, Jehong; Joo, Sungwook; Hong, Sanghwui; Mun, Jihoon;
  PDF(new window)
 Abstract
Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.
 Keywords
Aluminum;Graphite;Spark Plasma Sintering;Thermal Conductivity;Coefficient of thermal expansion (CTE);
 Language
Korean
 Cited by
 References
1.
G. Kravchenko, B. Karunamurthy and H. E. Pettermann: Procedia Mater. Sci., 3 (2014) 63. crossref(new window)

2.
M. Andresen and M. Liserre: Microelectron. Reliab., 54 (2014) 1935. crossref(new window)

3.
N. Govindaraju and R. N. Singh: Mater. Sci. Eng. B, 176 (2011) 1058. crossref(new window)

4.
W. Zhang, L. Shen, Y. Yang and H. Chen: Appl. Therm. Eng., 90 (2015) 664. crossref(new window)

5.
H. Kwon, S. Cho and A. Kawasaki: Mater. Trans., 1 (2015) 108.

6.
H. Kwon, D. H. Park, Y. Park, J. F. Silvain, A. Kawasaki and Y. Park: Met. Mater. Int., 1 (2010) 71.

7.
S. Cho, K. Kikuchi, A. Kawasaki, H. Kwon and Y. Kim: Nanotechnology, 23 (2012) 315705. crossref(new window)

8.
X. J. Zhao, Y. X. Cai, J. Wang, X. H. Li and C. Zhang: Appl. Therm. Eng., 75 (2015) 248. crossref(new window)

9.
M. Schobel, H.P. Degischer, S. Vaucher, M. Hofmann and P. Cloetens: Acta Mater., 58 (2010) 6421. crossref(new window)

10.
G. Lalet, H. Kurita, J.M. Heintz, G. Lacombe, A. Kawasaki and J.F. Silvain: J. Mater. Sci., 49 (2014) 3268. crossref(new window)

11.
H. Kurita, H. Kwon, M. Estili and A. Kawasaki: Mater. Trans., 10 (2011) 1960.

12.
T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J. F. Lofer and P. J. Uggowitzer: Mater. Sci. Eng. A, 448 (2007) 1. crossref(new window)

13.
D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia and A. K. Mukherjee: Scr. Mater., 60 (2009) 835. crossref(new window)

14.
J.K. Park and J.P. Lucas: Scr. Mater., 37 (1997) 511. crossref(new window)

15.
K. Yoshida and H. Morigami: Microelectron. Reliab., 44 (2004) 303. crossref(new window)