Advanced SearchSearch Tips
Spark Plasma Sintering of Fe-Ni-Cu-Mo-C Low Alloy Steel Powder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Spark Plasma Sintering of Fe-Ni-Cu-Mo-C Low Alloy Steel Powder
Nguyen, Hong-Hai; Nguyen, Minh-Thuyet; Kim, Won Joo; Kim, Ho Yoon; Park, Sung Gye; Kim, Jin-Chun;
  PDF(new window)
In this study, Fe-Cu-Ni-Mo-C low alloy steel powder is consolidated by spark plasma sintering (SPS) process. The internal structure and the surface fracture behavior are studied using field-emission scanning electron microscopy and optical microscopy techniques. The bulk samples are polished and etched in order to observe the internal structure. The sample sintered at with holding time of 10 minutes achieves nearly full density of 98.9% while the density of the as-received conventionally sintered product is 90.3%. The fracture microstructures indicate that the sample prepared at by the SPS process is hard to break out because of the presence of both grain boundaries and internal particle fractures. Moreover, the lamellar pearlite structure is also observed in this sample. The samples sintered at 1000 and exhibit a large number of tiny particles and pores due to the melting of Cu and aggregation of the alloy elements during the SPS process. The highest hardness value of 296.52 HV is observed for the sample sintered at with holding time of 10 minutes.
Low alloy steel;Spark plasma sintering;Microstructure;Vickers hardness;Field emission scanning electron microscopy;
 Cited by
I. Chang and Y. Zhao: Advances in Powder Metallurgy: Properties, Processing and Applications, Woodhead Publishing, UK (2013).

R. Yilmaz and M. R. Ekici: Journal of Achievements in Materials and Manufacturing Engineering, 31 (2008) 23.

H. Khorsand, S. M. Habibi, H Yoozbashizadea, K. Janghorban, S. M. S Reihani, H. Rahmani Seraji and M. Ashtari: Mater. Des., 23 (2002) 667. crossref(new window)

Y. H. Lu, Z. Y. Xiao, L. Hu, F. Luo, Y. B. Wu and D. H. Ni: Mater. Des., 55 (2004) 758.

B. Lopez, I. Gutierrez and J. J. Urcola: Mater. Charact., 28 (1992) 49. crossref(new window)

G. Navarro, M. A. Jabbari Taleghani and J. M. Torralba: Powder Metall., 56 (2013) 11. crossref(new window)

R. J. Causton and J. J. Fulmer: Adv. Powder. Metall. Part. Mater., 5 (1992) 17.

M. D. Charre: Microstructure of Steels and Cast Irons, Springer (2003) 284.

M. Tokita: Materials Science Forum, 308 (1999) 83.

R. Chaim: Mater. Sci. Eng. A, 443 (2007) 25. crossref(new window)

N. Saheb, Z. Iqbal, A. Khalil, A. S. Hakeem, N. A. Aqeeli, T. Laoui, A. A. Quitub and R. Kirchner: J. Nanomater., 2012 (2012) 1.

M. Schwertz, S. Lemonnier, E. Barraud, A. Carrado, M. F. Vallat and M. Nardin: Powder Metall., 58 (2015) 87. crossref(new window)

M. Suaìrez, A. Fernandez, J. L. Meneìndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel: Sintering Applications, B. Ertug (Ed), InTech (2013) 319.

Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. crossref(new window)

F. Zhang, M. Reich, O. Kessler and E. Burkel: Mater. Today, 16 (2013) 192. crossref(new window)

S. N. Bagchi and K. Prakash: Industrial Steel Reference Book, New Age International, New Delhi (1986).

M. Tokia: J. Soc. Powder Technol. Japan, 30 (1993) 790. crossref(new window)

E. Oberg, F. D. Jones, H. L. Horton and H. H. Ryffel: Machinery's Handbook, Industrial Press, C. J. Mccauley (Ed), New York (2012).