JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method
Minh, Thuyet-Nguyen; Hong, Hai-Nguyen; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun;
  PDF(new window)
 Abstract
In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.
 Keywords
Carbon nanotubes;Ni-CNTs nanocomposites;Metal matrix nanocomposites;Electrical explosion of wire method;Spark plasma sintering process;
 Language
English
 Cited by
 References
1.
IIjima S: Nature., 354 (1991) 56. crossref(new window)

2.
S. R. Bakshi, D. Lahiri, R. R. Patel and A. Agarwal: Thin Solid Films., 518 (2010) 1703 crossref(new window)

3.
J.N. Boland and X.S. Li: Materials., 3 (2010) 1390. crossref(new window)

4.
Nuno Silvestre: Int. J. Compos. Mater., 3 (2013) 28.

5.
S. R. Bakshi, D. Lahiri and A. Agarwal: Int. Mater. Rev., 55 (2010) 41. crossref(new window)

6.
S. Yamanaka, R. Gonda, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kun and T. Tsukada: Mater. Trans., 48 (2007) 2506. crossref(new window)

7.
S. Cha, K. K., S. Arshad, C. Mo and S. Hong: Adv. Mater., 70 (2005) 1377.

8.
J. Y. Hwang, B. K. Lim, J. Tiley, R. Banerijee and S. H. Hong: Carbon., 57 (2013) 282. crossref(new window)

9.
T. Borkar, J. Hwang, J. Y. Hwang, T. W. Scharf, J. Tiley, S. H. Hong and R. Banerijee: J. Mater. Res.,, 29 (2014) 761. crossref(new window)

10.
T. Borkar and R. Banerjee: Mater. Sci. Eng., A, 618 (2014) 176. crossref(new window)

11.
N. Saheb, Z. Iqbal, A. Khalil, A. S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub and R. Kirchner: J. Nanomater., 2012 (2012) 13.

12.
L. H. Bac, J. S. Kim and J. C. Kim: Res. Chem. Intermed., 36 (2010) 795. crossref(new window)

13.
L. H. Bac, Y. S. Kwon, J. S. Kim, Y. I. Lee and J. C. Kim: Mater. Res. Bull., 45 (2010) 352. crossref(new window)

14.
H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley: Nature., 318 (1985) 162. crossref(new window)

15.
D. Ugarte: Nature, 359 (1992) 707. crossref(new window)

16.
M. Zeiger, N. Jackel, M. Asian, D. Weingarth and V. Presser: Carbon., 84 (2015) 584. crossref(new window)

17.
A.Koshio, M.Yudasaka, M. Zhang and S. Iijima: Nano Lett., 1 (2001) 361. crossref(new window)

18.
J. Zhu, M. Yudasaka, M. F. Zhang and S. Iijima: J. Phys. Chem. B, 108 (2004) 11317. crossref(new window)

19.
A. S. Muhsan, F. Ahmad, N.M. Mohamed and M. R. Raza: Int. J. Powder Metall., 51 (2015) 57.

20.
A. S. Muhsan, F. Ahmad, N. M. Mohamed, P. S. M. M. Yusoff and M. R. Raza: Nanosci. Nanotechnol. Lett., 6 (2014) 865. crossref(new window)

21.
Suarez, S., F. Lasserre and F. Mucklich: Mater. Sci. Eng., A, 587 (2013) 381. crossref(new window)