JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs
Choi, Hye Rim; Byun, Jong Min; Suk, Myung-Jin; Oh, Sung-Tag; Kim, Young Do;
  PDF(new window)
 Abstract
This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride () powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane () gas to increase the specific surface area. The synthesized Ti porous body has -sized macropores and -sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
 Keywords
Titanium porous body;freeze drying method;carbon nanotube (CNT);catalytic chemical vapor deposition (CCVD);specific surface area;
 Language
Korean
 Cited by
 References
1.
John Banhart: Prog. Mater Sci., 46 (2001) 559. crossref(new window)

2.
G. J. Davies and Shu Zhen: Prog. Mater Sci., 18 (1983) 1899. crossref(new window)

3.
H. Nakajima: Prog. Mater Sci., 52 (2007) 1091. crossref(new window)

4.
Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang, Y. Z. Liu and L. M. Wang: J. Alloys Compd., 384 (2004) 93. crossref(new window)

5.
M.-J. Suk, J. S. Kim and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 366 (Korean). crossref(new window)

6.
T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. crossref(new window)

7.
T. Fukasawa. Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. crossref(new window)

8.
Y. I. Seo, Y. M. Kim, Y. J. Lee, D.-G. Kim, K. H. Lee and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2009) 22 (Korean).

9.
N. Sano, S. Yamamoto and H. Tamon: Carbon, 50 (2012) 5618. crossref(new window)

10.
J. H. Park, J. M. Byun, H. S. Kim, M.-J. Suk, S.-T. Oh and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 371 (Korean). crossref(new window)

11.
V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng., A, A356 (2003) 190.

12.
S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nat. Mater., 8 (2009) 966. crossref(new window)

13.
K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.

14.
A. Magrez, J. W. Seo, R. Smajda, M. Mionic and L. Forro: Mateials, 3 (2010) 4871.

15.
F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostruct., 3 (2013) 333.

16.
H. Sharma, A. K. Shukla and W. D. Vankar: J. Appl. Phys., 110 (2011) 003726.