Advanced SearchSearch Tips
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bong, Jin Jong; Kang, Yu Mi; Choi, Seung Jin; Kim, Dong-Kwon; Lee, Kyung Mi; Kim, Hee Sun;
  PDF(new window)
While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or -ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation (, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.
Low-dose-rate irradiation;Mouse whole brain;Radiation-sensitive expressed genes;
 Cited by
Otake M, Schull WJ. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int. J. Radiat. Biol. 1998;74(2):159-171. crossref(new window)

Schull WJ, Otake M. Cognitive function and prenatal exposure to ionizing radiation. Teratology. 1999;59(4):222-226. crossref(new window)

Balentova S, Racekova E, Martoncikova M, Misurova E. Cell proliferation in the adult rat rostral migratory stream following exposure to gamma irradiation. Cell Mol. Neurobiol. 2006;26(7-8):1131-1139.

Lee WH, Cho HJ, Sonntag WE, Lee YW. Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat. Res. 2011;176(6): 753-760. crossref(new window)

Lee WH, Sonntag WE, Lee YW. Aging attenuates radiation-induced expression of pro-inflammatory mediators in rat brain. Neurosci. Lett. 2010;476(2):89-93. crossref(new window)

Veeraraghavan J, Natarajan M, Herman TS, Aravindan N. Low-dose ${\gamma}$-radiation-induced oxidative stress response in mouse brain and gut: regulation by NF${\kappa}$B-MnSOD cross-signaling. Mutat. Res. 2011;718(1-2):44-55. crossref(new window)

York JM, Blevins NA, Meling DD, Peterlin MB, Gridley DS, Cengel KA, Freund GG. The biobehavioral and neuroimmune impact of low-dose ionizing radiation. Brain Behav. Immun. 2012;26(2):218-227. crossref(new window)

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.

Verheyde J, Benotmane MA. Unraveling the fundamental molecular mechanisms of morphological and cognitive defects in the irradiated brain. Brain Research Reviews. 2007;53(2):312-320. crossref(new window)

Gavinski S, Woloschak GE. Expression of viral and virus-like elements in DNA repair-deficient/immunodeficient "wasted" mice. J. Immunol. 1989;142(6):1861-1866.

Tomita M, Morohoshi F, Matsumoto Y, Otsuka K, Sakai K. Role of DNA double-strand break repair genes in cell proliferation under low dose-rate irradiation conditions. J. Radiat. Res. 2008;49(5):557-564. crossref(new window)

Shin SC, Kang YM, Kim HS. Life span and thymic lymphoma incidence in high- and low-dose-rate irradiated AKR/J mice and commonly expressed genes. Radiat. Res. 2010;174(3):341-346. crossref(new window)

Eckert RL, Lee KC. S100A7 (Psoriasin): a story of mice and men. J. Invest. Dermatol. 2006;126(7):1442-1444. crossref(new window)

Lee KC, Eckert RL S100A7 (Psoriasin)--mechanism of antibacterial action in wounds. J. Invest. Dermatol. 2007;127(4):945-957. crossref(new window)

Boniface K, Bernard FX, Garcia M, Gurney, AL, Lecron, JC. Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 2005;174(6):3695-3702. crossref(new window)

Boniface K, Diveu C, Morel F, Pedretti N, Froger J, Ravon E, Garcia M, Venereau E, Preisser L, Guignouard E, Guillet G, Dagregorio G, Pene J, Moles JP, Yssel H, Chevalier S, Bernard FX, Gascan H, Lecron JC. Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation. J. Immunol. 2007;178(7):4615-4622. crossref(new window)

Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. S100 proteins in the epidermis. J. Invest. Dermatol. 2004;123(1):23-33. crossref(new window)

Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 2006;36(5):1309-1323. crossref(new window)

Zhang H, Wang Y, Chen Y, Sun S, Li N, Lv D, Liu C, Huang L, He D, Xiao X. Identification and validation of S100A7 associated with lung squamous cell carcinoma metastasis to brain. Lung Cancer. 2007;57(1):37-45. crossref(new window)

Qin W, Ho L, Wang J, Peskind E, Pasinetti GM. S100A7, a novel Alzheimer's disease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS One. 2009;4(1):e4183. crossref(new window)

Jansen S, Podschun R, Leib SL, Grotzinger J, Oestern S, Michalek M, Pufe T, Brandenburg LO. Expression and Function of Psoriasin (S100A7) and Koebnerisin (S100A15) in the Brain. Infect Immun. 2013;81(5):1788-1797. crossref(new window)

Julius D, Nathans J. Signaling by sensory receptors. Cold Spring Harb Perspect Biol. 2012;4(1):a005991.

Garcia-Esparcia P, Schluter A, Carmona M, Moreno J, Ansoleaga B, Torrejon-Escribano B, Gustincich S, Pujol A, Ferrer I. Functional Genomics Reveals Dysregulation of Cortical Olfactory Receptors in Parkinson Disease: Novel Putative Chemoreceptors in the Human Brain. J. Neuropathol Exp. Neurol. 2013;72(6):524-539. crossref(new window)

Zhao W, Ho L, Varghese M, Yemul S, Dams-O'Connor K, Gordon W, Knable L, Freire D, Haroutunian V, Pasinetti GM. Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J. Alzheimers Dis. 2013;34(2):417-429.