JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Physics Model for 600 MeV Protons and 290 MeV·n-1 Oxygen Ions on Carbon in MCNPX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Physics Model for 600 MeV Protons and 290 MeV·n-1 Oxygen Ions on Carbon in MCNPX
Lee, Arim; Kim, Donghyun; Jung, Nam-Suk; Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock;
  PDF(new window)
 Abstract
Background: With the increase in the number of particle accelerator facilities under either operation or construction, the accurate calculation using Monte Carlo codes become more important in the shielding design and radiation safety evaluation of accelerator facilities. Materials and Methods: The calculations with different physics models were applied in both of cases: using only physics model and using the mix and match method of MCNPX code. The issued conditions were the interactions of 600 MeV proton and oxygen with a carbon target. Both of cross-section libraries, JENDL High Energy File 2007 (JENDL/HE-2007) and LA150, were tested in this calculation. In the case of oxygen ion interactions, the calculation results using LAQGSM physics model and JENDL/HE-2007 library were compared with D. Satoh`s experimental data. Other Monte Carlo calculations using PHITS and FLUKA codes were also carried out for further benchmarking study. Results and Discussion: It was clearly found that the physics models, especially intra-nuclear cascade model, gave a great effect to determine proton-induced secondary neutron spectrum in MCNPX code. The variety of physics models related to heavy ion interactions did not make big difference on the secondary particle productions. Conclusion: The variations of secondary neutron spectra and particle transports depending on various physics models in MCNPX code were studied and the result of this study can be used for the shielding design and radiation safety evaluation.
 Keywords
MCNPX;Physics model;Secondary neutron;Benchmarking;
 Language
English
 Cited by
 References
1.
Los Alamos National Laboratory, $MCNPX^{TM}$ user's manual version 2.7.0. LA-CP-11-00438. 2011;56-65.

2.
Satoh D, et al. Measurement of neutron-production double-differential cross-sections on carbon bombard with 290-MeV/nucleon carbon and oxygen ions. Nucl. Instr. Meth. A. 2011;644:59-67. crossref(new window)

3.
Niita K, Sato T, Iwase H, Nose H, Nakashima H, Sihver L. PHITS-a particle and heavy ion transport code system. Radiat. Meas. 2006;41:1080-1090. crossref(new window)

4.
Serber R. Nuclear reactions at high energies. Phys. Rev. 1947;72:1114-1115. crossref(new window)

5.
Bertini HW. Low-energy intranuclear cascade calculation. Phys. Rev. 1963;131:1801-1821. crossref(new window)

6.
Yariv Y, Praenkel Z. Intranuclear cascade calculation of high-energy heavy-ion interactions. Phys. Rev. C. 1979;20:2227-2243. crossref(new window)

7.
Boudard A, Cugnon J, Leray S, Volant C. Intranuclear cascade model for a comprehensive description of spallation reaction data. Phys. Rev. C. 2002;66:1-28.

8.
Gudima KK, Mashnik SG, Toneev VD, Cascadeexciton model of nuclear reactions. Nucl. Phys. A. 1983;401:329-361. crossref(new window)

9.
Gaimard JJ, Schmidt KH. A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A. 1991;531:709-745. crossref(new window)

10.
Junghans AR, Jong MD, Clerc HG, Ignatyuk AV, Kudyaev GA, Schmidt KH. Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density. Nucl. Phys. A. 1998;629:635-655. crossref(new window)