Advanced SearchSearch Tips
Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Mushroom
  • Volume 14, Issue 2,  2016, pp.51-58
  • Publisher : The Korean Society Of Mushroom Science
  • DOI : 10.14480/JM.2016.14.2.51
 Title & Authors
Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi
Lim, Sun-Hwa; Kang, Hee-Wan;
  PDF(new window)
Basidiomycetous fungi are one of the most potent biodegraders because many of its species grow on dead wood or litter, in environments rich in lignocellulose. For the degradation of lignocellulose, basidiomycetes utilize their lignocellulytic enzymes, which typically include laccase (EC, lignin peroxidase (EC, xylanase (EC, and cellulase (EC In recent years, the practical applications of basidiomycetes have ranged from the textile to the pulp and paper industries, and from food applications to bioremediation processes and industrial enzymatic saccharification of biomass. Recently, spent mushroom substrates of edible mushrooms have been used as sources of bulk enzymes to decolorize synthetic dyes in textile wastewater. In this review, the occurrence, mode of action, general properties, and production of lignocellulytic enzymes from mushroom species will be discussed. We will also discuss the potential applications of these enzymes.
Industrial applications;lignocellulytic enzymes;Mushroom;Basidiomycetes;
 Cited by
Almin K., Eriksson K, Pettersson B. 1975. Extracellular Enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of cellulose. 2. activities of the five endo-1,4,${\beta}$-glucanases towards carboxymethyl-cellulose. Eur J Biochem. 51: 207-211. crossref(new window)

Altaf SA, Umar DM, Muhammad MS. 2010. Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. World Appl Sci J. 8: 47-49

Ayala M, Gonzalez-Munoz SS. Pinos-Rodriguez JM. Vazquez C, Meneses, M. Loera O. Mendoza GD. 2011) Fibrolytic potential of spent compost of Agaicus birsporus to degrade forages for ruminants. African J Microbiol Res. 5:643-650.

Baldrian P. 2011. production of lignocellulytic enzymes by mushrooms. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7)

Baldrian P, Valasova V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. crossref(new window)

Ball AS, Jacson AM. 1995. The recovery of lignocelluloseodegrading enzymes from spent mushroom compost. Bioroes. Technol. 54:311-314. crossref(new window)

Banci L, Ciofi-Baffoni S, Tien M. 1999. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38: 3205-3210. crossref(new window)

Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8:548-557. crossref(new window)

Bolobova AV, Askadskii AA, Kondrashchenko VI, Rabinovich ML. 2002. Theoretical principles of technology of wood composites. Book II. Enzymes, Models, Processes [in Russian], Nauka, Moscow

Brijwani K, Rigdon A, Vadlani PV. 2010. Fungal laccases: production, function, and applications in food processing. Enzyme Res. 2010: 1-10

Bushwell JA. 1998. Production of lignocellulolytic enzymes by edible mushrooms and their role in substrate utilization. Paper presented at Icro Unesco University Malaya, Kuala Lumpur, Malaysia, pp. 1-5

Cai YJ. Buswell JA, Chang ST. 1994. Cellulase and hemicellulase of Volvalriella volvacea and the effect of Tween 80 on enzyme productoin. Mycol Res. 98:440-446

Call HP, Mucke I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediatorsystems. J Biotechnol. 53:163-202. crossref(new window)

Collins T, Gerday C, Feller G. 2005. Xylanases, xylanases families and extremophilic xylanases, FEMS Microbiol Rev 29:3-23. crossref(new window)

Couto SR, Toca Herrera JL .2006. Industrial and biotechnological applications of laccases: a review. Biotech Adv. 24: 500-513. crossref(new window)

Dashtban M, Schraft H, Wensheng QW. 2009 Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Internl J Biol Sci. 2009;5:578-595

Duran N, Rosa MA. D'Annibale A, Gianfreda L. 2002. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: review, Enzyme Microbiol Technol. 31: 907-931. crossref(new window)

Eriksson K, Pettersson B. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of cellulose. 1. Separation, Purification and Physico-Chemical Characterization of Five Endo,1,4-glucanases. Eur J Biochem. 51: 193-218. crossref(new window)

Fujita Y, Katahira S, Ueda M, Tanaka A, Okada H, Morikawa Y, Fukuda H, Kondo A. 2002. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J Mol Catal B Enzym. 17:189-195. crossref(new window)

Ganesh R, Boardman GD, Michelson D. 1994. Fate of azo dyes in sludges. Water Res. 28:1367-1376. crossref(new window)

Gasecka M, Drzewiecka K, Stachowiak J, Siwulski M, Golin'ski P, Sobieralski K, Golak I. 2012. Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Scientiarum Polonorum- Hortorum Cultus. 11:39-46.

Gawande PV, Kamat MY. 1999. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol. 87:511-519. crossref(new window)

Gianfreda L, Xu F, Bollag JM. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremed J. 3:1-25. crossref(new window)

Gianluca B, Chiara L, Giovanni M, Patrizia R, Carla, P, Luciano V, Francesco G. 2008. Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol. 79:731-741. crossref(new window)

Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G. 1999. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J. 341:655-663.

Guo M, Lu F, Pu J, Bai D, Du L. 2005. Molecular cloning of the DNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl Microbiol Biotechnol. 69:178-183. crossref(new window)

Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S. 1996. Production of fungal xylanases. Biores Technol 58: 137-161. crossref(new window)

Hazlewood GP, Gilbert HJ. 1993. Molecular biology of hemicellulases. In: Coughlan, M. P and Hazlewood G. P(eds.), Hemicelluloses and Hemicellulases. Portland Press, London, UK.

He J, Zhang K, Ding X, Chen D. 2009. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9:56-66. crossref(new window)

Kibbelwhite PR, Clark TA. 1996. Enzymatic modification of radiata pine kraft fiber and handsheet properties. Appia J. 49:390-396.

Ko HK, Park SH, Kim SH, Park HG, Park WM. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 50:103-106. crossref(new window)

Kunamneni A. Ballesteros A, Plou FJ Alcade M. 2007. Fungal laccases-a versatile enzyme for biotechnological applications, pp. 233-244, in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez-Vilas(ed), Formatex, Badajoz, Spain.

Lee JW, Gwak KS, Kim SI, Kim MY, Choi DH, Choi IG. 2007. Characterization of xylanase from Lentinus edodes M290 cultured on waste mushroom logs. Microbiol Biotechnol.17:1811-1817

Lim SH, Kim JK, Lee YH, Kang HW. 2012. Production of lignocellulytic enzymes from spent mushroom compost of Pleurotus eryngii. Kor J Mycol. 40:152-158. (in Korean) crossref(new window)

Lim SH, Lee YH, Kang HW. 2013. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology 41:214-220. crossref(new window)

Lim SH, Lee YH, Kang HW. 2013. Optimal extraction and characteristics of lignocellulytic enzymes from various spent mushroom composts. Kor J Mycol. 41:160-166(in Korean). crossref(new window)

Ljungdahl LG. 2008. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use, Ann N Y Acad Sci, 1125:308-321. crossref(new window)

Matcham SE, Wood DA. 1992. Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol. Lett. 14:297-300. crossref(new window)

Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60:551-565. crossref(new window)

Minussi, RC, Rossi M, Bologna L, Rotilio D, Pastore GM, Duran N .2007. Phenols removal in musts: strategy for wine stabilization by laccase, J. Mol. Catal. B: Enzymes 45: 102-107. crossref(new window)

Minussi R, Pastore G. M, Duran N. 2002. Potential applications of laccase in the food industry. Trends Food Sci Technol. 13:205-216. crossref(new window)

Moosvi S, Kher X, Madamwar D. 2007. Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes and Pigments. 74: 723-729. crossref(new window)

Mukherjeem M, Senguptaa S. 1985. Inducible Xylanase of the Mushroom Termitomyces clypeatus Differing from the Xylanase/Amylase Produced in dextrin Medium. J General Microbiol. 131: 1881-1885.

Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, et al. 2010 Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 28: 957-963. crossref(new window)

O'Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W. 1999. Color in textile effluents sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009-1018. crossref(new window)

Oscar R-C, Trajano HL, Sheldon J.B. Duff SJB. 2014. Stability of commercial glucanase and ${\beta}$-glucosidase preparations under hydrolysis conditions. Peer J: e 402.

Pandey KK, Pitman AJ 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Internl Biodet Biodeg. 52:151-160. crossref(new window)

Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. 2003.Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb. Technol. 33:135-325. crossref(new window)

Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. 1997. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 272:31301-31307. crossref(new window)

Papinutti L, Forchiassin F. 2010. Adsorption and decolorization of dyes using solid residues from Pleurotus ostreatus mushroom production. Biotech Biop Engin. 15:1102-1109. crossref(new window)

Park YJ, Baek JH, Lee SW et al. 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. Plos One 9: e93560 crossref(new window)

Perry CR, Matcham SE, Wood DA, hurston CF. 1993. The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol. 139:171-178. crossref(new window)

Pastor FI, Gallardo JO, Sanz-Aparicio J, Diaz P. 2007. Xylanases:Molecular Properties and Applications, pp. 65-85 In: Polaina, J and MacCabe A. P (Eds). Industrial Enzymes: Structure, Function and Applications. Springer. Dordrecht, The Netherlands.

Pettersson G. 1969 Studies on celluloytic enzymes. VI. specificity and mode of action on different substrates of a cellulase from Penicillium notatum. Arch Biochem Biophys. 130-286.

Polizeli ML, Rizzatti AC, Monti R. Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: Properties and industrial applications. Appl Microbiol Biotechnol. 67:577-591. crossref(new window)

Prade RA. 1995. Xylanases, from biology to biotechnology. Biotechnol Genet Eng Rev 13:101-131.

Reese E, Siu R, Levinson H. 1950. The biological degradation of soluble cellulose derivatives and Its relationship to the mechanism of cellulose hydrolysis. J Appl Bacteriol. 59:485-497.

Sanchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 27:185-194. crossref(new window)

Saranyu K, Rakrudee S. 2007. Laccase from spent mushroom compost of Lentinus polychrous Lev. and its potential for remazol brilliant blue R decolourisation. Biotechnology 6: 408-413. crossref(new window)

Scarse R. 1995. Cultivating mushrooms-the potential, Mycologist 9:18-19. crossref(new window)

Shin KS, Oh IK, Kim CJ. 1997. Production and purification of remazol brilliant blue R. decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol. 63: 1744-1748.

Singh AD, Abdullah N, Vikineswary S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J Chem Technol Biotechnol. 78:743-752. crossref(new window)

Spano L, Medeiros J, Mandels M. 1975 Enzymatic Hydrolysis of Cellulosic Waste to Glucose. Resour Recov Conserv. 1:279-294.

Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39-67. crossref(new window)

Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol. 19:166-172. crossref(new window)

Whitaker DR. 1971. Enzymes 3rd Ed. 5, 274-275.

Xu, F. 1997. Effect of redox potential and hydroxyde inhibition on the pH activity profile of fungal laccase. J Biol Chem. 272:924-928. crossref(new window)

Yaropolov AI, Skorobogat'ko OV, Vartanov SS, Varfolomeev SD. 1994. Laccase, Properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol. 49:257-280. crossref(new window)