Advanced SearchSearch Tips
Comparison of Pretreatment Methods for Determination of 55Fe and 63Ni Activity in Nuclear Wastes Sample
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Pretreatment Methods for Determination of 55Fe and 63Ni Activity in Nuclear Wastes Sample
Lee, Hoon; Lim, Jong-Myoung; Ji, Young-Yong; Jung, Kun-Ho; Kang, Mun-Ja; Choi, Geun-Sik; Lee, Jin-Hong;
  PDF(new window)
55Fe and 63Ni are key factors in deciding the proper handling of the decommissioning of radioactive waste from nuclear facilities. For determining beta emitting radionuclides, the dismantled waste samples should be completely decomposed and separated from the sample matrix. This study reports the comparison results of the recovering efficiencies of Iron and Nickel with wet digestion methods that use various acids and alkali-fusion methods. Various matrices of NIST SRMs (1646a, 1944, 8704, 2709a, and 1633c), the recovering efficiencies of using alkali-fusion methods ranged from 95.3 to 98.3% for Iron, and from 86.6 to 88.1% for Nickel within about 2% of relative standard deviation. On the other hand, those using one of the three wet digestion methods ranged from 77.9 to 105.3% for Iron and from 40.1 to 78.5% for Nickel with over 10% of relative standard deviation. Therefore, one may draw the conclusion that the analytical results derived from Iron and Nickel using alkali-fusion methods are fairly reliable due to the recovering efficiencies observed.
55Fe;63Ni;Decommissioning;Pretreatment;Wet digestion;Alkali-fusion;
 Cited by
B. I. Kim and C. L. Kim, “Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste” JNFCWT, 12(2), 165-169 (2014).

B. Y. Min, P. J. Woo, W. K. Choi, and K. W. Lee, “Separation of Radionuclide from Dismantled Concrete Waste” J. Korean Radioact. Waste Soc., 7(2), 79-86 (2009).

Y. j. Lee, K. W. Lee, B. Y. Min, D. S. Hwang, and J. K. Moon, “The characterization of cement waste form for final disposal of decommissioning concrete wastes” Annals of Nuclear Energy, 77, 294-299 (2015). crossref(new window)

S. B. Hong, M. J. Kang, K. W. Lee, and U. S. Chung, “Development of scaling factors for the activated concrete of the KRR-2” Applied Radiation and Isotopes, 67, 1530-1533 (2009). crossref(new window)

H. R. Kim, “The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2” Applied Radiation and Isotopoes, 79, 109-113 (2013). crossref(new window)

X. Hou, “Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities” Journal of Radioanalytical Nuclear Chemistry, 273(1), 43-48 (2007). crossref(new window)

M. D. Bondarov, A. M. Maksimenko, V. A. Zheltonozhskii, M. V. Zheltonozhskaya, V. V. Petrov, and A. I. Savin, “Activity study of graphite from the Chernobyl NPP reactor” Bulletine of the Russian Academy of Sciences: physics, 73(7), 261-265 (2009). crossref(new window)

B. Remenec, S. Dulanska, and L. Matel, “Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice” Journal of Radioanalytical Nuclear Chemistry, 298, 1879-1884 (2013). crossref(new window)

A. Gudelis, R. Druteikien, B. Luksien, R. Gvozdait, S. P. Nielsen, X. Hou, J. Mazeika, and R. Petrosius, “Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment” Journal of Environmental Radioactivity, 101, 464-467 (2010). crossref(new window)

P. E. Warwick, A. B. Cundy, I. W. Croudace, M. E. D. Bains, and A. A. Dale, “The uptake of Iron-55 by marine sediment, macroalgae, and biota following discharge from a nuclear power station” ENVIRONMENTAL SCIENCE & TECHNOLOGY, 35, 2171- 2177 (2001). crossref(new window)

M. J. Kang, K. H. Chung, S. B. Hong, G. S. Choi, and C. W. Lee, “Radioactivity Analysis of 55Fe and 63Ni in Dismantled Concrete” J. Korean Radioact. Waste Soc., 5(1), 19-27 (2007).

M. H. T. Taddei, J. F. Macacini, R. Vicente, J. T. Marumo, S. K. Sakata, and L. A. A. Terremoto, “Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor” Applied Radiation and Isotopes, 77, 50-55 (2013). crossref(new window)

N. F. Y. Tam and M. W. Y. Yao, “Three digestion method to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong” Environmental Contamination and Toxicology, 62, 708-716 (1999). crossref(new window)

B. S. Krumgalz and G. Fainshtein, “Trace metal contents in certified reference sediments determined by nitric acid digestion and atomic absorption spectrometry” Analytica Chimica Acta, 218, 335-340 (1989). crossref(new window)

R. C. Nugueirol, W. J. de Melo, E. I. Bertocini, and L. R. F. Alleoni, “Concentrations of Cu, Fe, Mn, and Zn in tropical soils amended with sewage sludge and composted sewage sludge” Environ Monit Assess, 185, 2929-2938 (2013). crossref(new window)

S. N. dos Santos and L. R. F. Alleoni, “Methods for extracting heavy metals in soils from the Southwestern Amazon, Brazil” Water Air Soil Pollut, 224-1430 (2013).

C. H. Lee, M. H. Lee, S. H. Han, Y. K. Ha, and K. S. Song, “Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples” Journal of Radioanalytical Nuclear Chemistry, 288, 319-325 (2011). crossref(new window)

X. Hou, L. F. Østergaard and Sven P. Nielsen, “Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting” Analytica Chimica Acta, 535, 297-307 (2005). crossref(new window)

W. Fulin, T. E. Davis, and V. V. Tarabara, “Crystallization of Calcium sulfate dihydrate in the presence of colloidal silica” industrial & Engineering Chemistry Research, 49(22), 11344-11350 (2010). crossref(new window)

G. R. Xu, j. L. Zou, and G. B. Li, “Stabilization of heavy metal in sludge ceramsite” Water Research, 44, 2930-2938 (2010). crossref(new window)

A. A. Aydin and A. Aydin, “Development of an immobilization process for heavy metal containing galvanic solid waste by use of sodium tetraborate” Journal of Hazardous Materials, 270, 35-44 (2014). crossref(new window)

A. N. Ejhieh and M. K. Samani, “Effective removal of Ni(Ⅱ) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime” Journal of Hazardous Materials, 260, 339-349 (2013). crossref(new window)

J. L. Jones and L. C. Howick, “Precipitation from mixed solvents-Ⅵ nickel dimethylglyoxime” Talanta, 11, 757-760 (1964). crossref(new window)

Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu , and H. Lin, “Digestion methods for total heavy metals in sediments and soils” Water, air, and Soil Pollution, 141, 189-205 (2002). crossref(new window)

J. M. Morrison, L. Yunjiao, G. Vladimiros, Papangelakis, and I. Perederiy, “High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue” Hydrometallurgy, 97, 185-193 (2009). crossref(new window)

J. M. Morrison, M.B. Goldhaber, L. Lopaka L, J. M. Holloway, R. B. Wanty, R. E. Wolf, and J. F. Ranville, “A regional-scale study of chromium and nickel in soils of northern California, USA” Applied Geochemistry, 24, 1500-1511 (2009). crossref(new window)

D. A. Figueroa, B. D. Jimenez, and C. J. Rodrıguez-Sierra, “Trace metals in sediments of two estuarine lagoons from Puerto Rico” Environmental Pollution, 141, 336-342 (2006). crossref(new window)

M. J. Marques, A. Salvador, A. E. Morales-Rubio, and M. de la Guardia, “Trace element determination in sediments: a comparative study between neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS)” Microchemical Journal, 65, 177-187 (2000). crossref(new window)

J. Ni, R. C. Block, and X. G. Xu, "Photon activation analysis: a proof of principle using a NIST sediment standard and an electron accelerator at Rensselaer Polytechnic Institute" 53, 535-540 (2000). crossref(new window)

S. Guerzoni, G. Rovatti, E. Molinaroli, and G. Rampazzo, “Total and “Selective” Extraction Methods for Trace Metals in Marine Sediment Reference Samples (Mess-1, NBS 1646)” Chemistry and Ecology, 3(1) (1987). crossref(new window)

R. L. Paul, E. A. Mackey, R. Zeisler, R. O. Spatz, and B. E. Tomlin, “Determination of elements in SRM soil 2709a by neutron activation analysis” Journal of Radioanalytical Nuclear Chemistry, 282. 945-950 (2009). crossref(new window)

M. Chen and L. Q. Ma, “Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils” Soil Science Society of America Journal, 65, 499-510 (2001). crossref(new window)

I. L. Garcia, M. S. Merlos, and M. H. Cordoba, “Slurry Sampling for the Rapid Determination of Cobalt, Nickel and Copper in Solils and Sediments by Electrothermal Atomic Absorption Spectrometry” Mikrochimica Acta, 130, 295-300 (1999). crossref(new window)

Y. S. Chung, E. S. Jeong, and S. Y. Cho, “Intercomparison and determination of environmental standard samples by instrumental neutron activation analysis” Journal of Radioanalytical and Nuclear Chemistry, 217, 71-76 (1997). crossref(new window)

Q. S. Begum, Y. S. Chung, K. S. Choi, J. H. Moon, S. H. Kim, J. M. Lim, and Y. J. Kim, “Elemental Analysis using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Atomic Emission Spectrometry: A Comparative Study” KAERI Report, TR-2513/2013, 56 (2003).