Advanced SearchSearch Tips
TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing
Kim, Sung-Wook; Choi, Eun-Young; Park, Wooshin; Im, Hun Suk; Hur, Jin-Mok;
  PDF(new window)
Developing novel anode materials to replace the Pt anode currently used in electrolytic reduction is an important issue on pyroprocessing. In this study, the electrochemical behavior of TiN was investigated as the conductive ceramic anode which evolves O2 gas during the reaction. The feasibility and stability of the TiN anode was examined during the electrolytic reduction of UO2. The TiN anode could electrochemically convert UO2 to metallic U in a LiCl–Li2O molten salt electrolyte. No oxidation of TiN was observed during the reaction; however, the formation of voids in the bulk section appeared to limit the lifetime of the TiN anode.
Pyroprocessing;Electrolytic reduction;UO2;Anode;TiN;
 Cited by
Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing,;;;;;;;;;

Nuclear Engineering and Technology, 2016. vol.48. 4, pp.997-1001 crossref(new window)
Chemical Stability of Conductive Ceramic Anodes in LiCl–Li 2 O Molten Salt for Electrolytic Reduction in Pyroprocessing, Nuclear Engineering and Technology, 2016, 48, 4, 997  crossref(new windwow)
A preliminary study of pilot-scale electrolytic reduction of UO 2 using a graphite anode, Nuclear Engineering and Technology, 2017  crossref(new windwow)
Review—Metallic Lithium and the Reduction of Actinide Oxides, Journal of The Electrochemical Society, 2017, 164, 8, H5236  crossref(new windwow)
Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide, Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1, 809  crossref(new windwow)
H. Lee, G. I. Park, K. H. Kang, J. M. Hur, J. G. Kim, D. H. Ahn, Y. Z. Cho, and E. H. Kim, “Pyroprocessing Technology Development at KAERI”, Nucl. Eng. Techol. 43(4), 317-328 (2011). crossref(new window)

H. Ohta, T. Inoue, Y. Sakamura, and K. Kinoshita, “Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology”, Nucl. Technol., 150(2), 153-161 (2005). crossref(new window)

T. Inoue and L. Koch, “Development of Pyroprocessing and Its Future Direction”, Nucl. Eng. Technol., 40(3), 183-190 (2008). crossref(new window)

J. M. Hur, S. M. Jeong, and H. Lee, “Underpotential Deposition of Li in a Molten LiCl-Li2O Electrolyte for the Electrochemical Reduction of U from Uranium Oxides”, Electrochem. Commun., 12(5), 706-709 (2010). crossref(new window)

S. M. Jeong, H. S. Shin, S. H. Cho, J. M. Hur, and H. S. Lee, “Electrochemical Behavior of a Platinum Anode for Reduction of Uranium Oxide in a LiCl Molten Salt”, Electrochim. Acta, 54(26), 6335-6340 (2009). crossref(new window)

S. M. Jeong, H. S. Shin, S. S. Hong, J. M. Hur, J. B. Do, and H. S. Lee, “Electrochemical Reduction Behavior of U3O8 Powder in a LiCl Molten Salt”, Electrochim. Acta, 55(5), 1749-1755 (2010). crossref(new window)

E. Y. Choi, I. K. Choi, J. M. Hur, D. S. Kang, H. S. Shin, and S. M. Jeong, “In Situ Electrochemical Measurement of O2− Concentration in Molten Li2O/LiCl during Uranium Oxide Reduction Process”, Electrochem. Solid-State Lett., 15(3), E11-E13 (2012). crossref(new window)

J. M. Hur, J. S. Cha, and E. Y. Choi, “Can Carbon Be an Anode for Electrochemical Reduction in a LiCl-Li2O Molten Salt?”, ECS Electrochem. Lett., 3(10), E5-E7 (2014). crossref(new window)

S. W. Kim, W. Park, H. S. Im, J. M. Hur, S. S. Hong, S. C. Oh, and E. Y. Choi, “Electrochemical Behavior of Liquid Sb Anode System for Electrolytic Reduction of UO2”, J. Radioanal. Nucl. Chem., 303(1), 1041-1046 (2015). crossref(new window)

W. Park, J. K. Kim, J. M. Hur, E. Y. Choi, H. S. Im, and S. S. Hong, “Application of a Boron Doped Diamond (BDD) Electrode as an Anode for the Electrolytic Reduction of UO2 in Li2O-LiCl-KCl Molten Salt”, J. Nucl. Mater., 432(1-3), 175-181 (2013). crossref(new window)

J. Westlinder, T. Schram, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices”, IEEE Electron Device Lett. 24(9), 550-552 (2003). crossref(new window)

M. Wittmer and H. Melchior, "Applications of TiN Thin Films in Silicon Device Technology", 93(3-4), 397-405 (1982). crossref(new window)

H. G. Tompkins, “Oxidation of Titanium Nitride in Room Air and in Dry O2”, J. Appl. Phys., 70(7), 3876-3880 (1991). crossref(new window)

M. Wittmer, J. Noser, and H. Melchior, “Oxidation Kinetics of TiN Thin Films”, J. Appl. Phys. 52(11), 6659-6664 (1981). crossref(new window)