JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Veriation of Pore Structure of High Strength Concrete Including Silica Fume Exposed to High Temperature
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Veriation of Pore Structure of High Strength Concrete Including Silica Fume Exposed to High Temperature
Song Hun; Soh Yang-Seob;
  PDF(new window)
 Abstract
This work involves quantitatively investigating the correlation between reductions in strength and variations in pore structure under high temperature that can be utilized as estimation for predicting the inner temperature of member damaged by fire. The experimental results were remarkedly affected by micro-filling effect of silica fume and the different water-binder ratios. The increase of the exposure temperature caused the increase of porosity, which resulted from the reason that evaporable water in gel pore or capillary pores as well as chemically bound water was eliminated from hardened cement paste due to the dehydration of C-S-H and . Thermal shrinkage of hardened cement paste gives rise to micro-crack, which cause the increase of porosity. Based on the experimental result that the increase of porosity is in charge of exposure temperature, how porosity is distributed can predict temperature-time history and assess the performance of concrete damaged by fire.
 Keywords
fire;high temperature;porosity;high strength concrete;silica fume;
 Language
Korean
 Cited by
1.
고온조건이 고강도 콘크리트의 역학적 특성 및 미세구조에 미치는 영향,한민철;최현규;

대한건축학회논문집:구조계, 2011. vol.27. 3, pp.123-130
2.
고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구,김우석;강현구;김화중;

한국구조물진단유지관리공학회 논문집, 2014. vol.18. 3, pp.28-39 crossref(new window)
3.
고온에 노출된 초고강도 콘크리트의 압축특성,강용학;강충현;최현국;신현준;김화중;

한국콘크리트학회논문집, 2014. vol.26. 3, pp.377-384 crossref(new window)
4.
고온 환경에 노출된 시멘트 경화체의 공극 구조 변화,강승민;나승현;김경남;송명신;

한국세라믹학회지 , 2015. vol.52. 1, pp.48-55 crossref(new window)
1.
Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature, Journal of the Korean Ceramic Society, 2015, 52, 1, 48  crossref(new windwow)
2.
Compressive Properties of Ultra High Strength Concrete Exposed to High Temperature, Journal of the Korea Concrete Institute, 2014, 26, 3, 377  crossref(new windwow)
3.
State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete, Journal of the Korea institute for structural maintenance and inspection, 2014, 18, 3, 28  crossref(new windwow)
 References
1.
社団法人セメント協會, 'シリカフュ-ムを用いたコンクリ-トに關する調査報告,' 海洋開發專門委員會報告, 1986

2.
日本建築學會, 火災とコンクリ-ト, 'シンポジウム資科', 2001

3.
日本コンクリ-ト工學協會, 'コンクリ-ト構造物の火災安全性員委會報告集', 2002

4.
日本建築學會, '構造部材の火害診斷および補修補强方法', シンポジウム資科, 2002

5.
森 實, '建築材科の火災時における高溫性狀に關する硏究', 博士學位論文, 東京大學, 1975

6.
安部武雄ほか, '高溫度における高强度コンクリ-トのカ學的特性に關する基礎的硏究', 日本建築學會構造系論文集, No.515, 1999, pp.163-163

7.
ACI Committee, 'Silica Fume in Concrete, Draft 2,' American Concrete Institute, 1998

8.
P.K. Mehta, Concrete, 'Structure, Properties, and Materials,' Pretice Hall Interials, Prague, Vol.1, 1973, B25pp

9.
Wei-Ming Lin, 'Microstructures of Fire-Damaged Concrete,' ACI Materials Journals, Vol.93, No.3, 1996, 199pp

10.
Ulrich Schneider, 'Behavior of Concrete at High Temperatures,' Vertrieb durch verlag von wilhelm ernst & sohn, Berlin, 1982

11.
Zdenek P. Bazant, Maurice F. Kapaln, 'Concrete at High Temperatures : Material Properties and Mathematical Models,' Prentice Hall, England, 1996

12.
Eurocode 4, 'Design of composite steel and concrete structures,' Structural Fire Design, BSI, 1994

13.
植田後郞, 'ポルトランドセメントの水和反應と水和生成物', 分かリやすいセメントとコンクリ-ト知識, 1989