JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag
Lee Kwang-Myong; Kwon Ki-Heon; Lee Hoi-Keun; Lee Seung-Hoon; Kim Gyu-Yong;
  PDF(new window)
 Abstract
The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of , , and , were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B`s. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.
 Keywords
autogenous shrinkage;water-binder ratio;blast-furnace slag;prediction model;
 Language
Korean
 Cited by
1.
양생 조건이 콘크리트의 체적 변화에 미치는 영향,이광명;선우주연;이회근;;

한국콘크리트학회논문집, 2006. vol.18. 3, pp.331-338 crossref(new window)
2.
팽창재와 수축저감제를 조차 사용한 고성능 콘크리트의 자기수축 해석,한민철;

한국건축시공학회지, 2007. vol.7. 3, pp.123-130 crossref(new window)
3.
고강도 매스 콘크리트의 초기재령 수화열 및 자기수축 특성,이의배;김규용;구경모;이형준;김영선;남정수;

대한건축학회논문집:구조계, 2009. vol.25. 5, pp.153-160
4.
시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석,김규용;구경모;이형준;이의배;

한국콘크리트학회논문집, 2009. vol.21. 4, pp.481-488 crossref(new window)
5.
바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구,강수태;류금성;고경택;이장화;

한국콘크리트학회논문집, 2011. vol.23. 4, pp.487-494 crossref(new window)
6.
200MPa급 초고강도 콘크리트의 자기수축 특성에 관한 실험적 연구,하정수;백민수;손유신;이승훈;이영도;정상진;

대한건축학회논문집:구조계, 2011. vol.27. 8, pp.113-122
7.
공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링,이학수;권성준;

한국구조물진단유지관리공학회 논문집, 2012. vol.16. 6, pp.124-133 crossref(new window)
8.
탄소 저감형 재료를 활용한 콘크리트의 현장 적용성에 관한 실험적 연구,전찬기;전중규;

한국재난정보학회 논문집, 2013. vol.9. 2, pp.128-136
9.
다량의 혼화재를 사용한 고강도 콘크리트의 역학적 특성,백철우;박조범;최성우;조현태;류득현;

한국건설순환자원학회논문집, 2014. vol.2. 3, pp.180-187 crossref(new window)
10.
고강도 알칼리 활성 슬래그 모르타르의 자기수축 특성,오상혁;홍성현;이광명;

한국건설순환자원학회논문집, 2014. vol.2. 1, pp.60-65 crossref(new window)
11.
고강도 고로슬래그 혼합 시멘트 페이스트의 수화 및 포졸란 반응에 미치는 고로슬래그 미분말의 치환률과 분말도의 영향,정지용;장승엽;최영철;정상화;김성일;

한국콘크리트학회논문집, 2015. vol.27. 2, pp.115-125 crossref(new window)
12.
고로슬래그가 다량 혼입된 고강도 콘크리트의 수축 특성 및 균열 잠재성 평가,김백중;박충훈;이종구;

대한건축학회논문집:구조계, 2015. vol.31. 6, pp.51-58 crossref(new window)
13.
알칼리 활성 슬래그 결합재의 미소수화열 분석,최영철;조현우;오성우;문규돈;

한국건설순환자원학회논문집, 2015. vol.3. 3, pp.237-243 crossref(new window)
14.
3성분계 친환경 저시멘트 콘크리트의 유동성 및 경화특성,최세진;전용수;

대한건축학회논문집:구조계, 2015. vol.31. 11, pp.63-70 crossref(new window)
1.
Mechanical Properties of High Strength Concrete with High Volume Mineral Admixture, Journal of the Korean Recycled Construction Resources Institute, 2014, 2, 3, 180  crossref(new windwow)
2.
Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes, Journal of the Korea Concrete Institute, 2015, 27, 2, 115  crossref(new windwow)
3.
The Fluidity and Hardened Properties of Eco-Friendly Low Cement Concrete with 3 Types of Binders, Journal of the Architectural Institute of Korea Structure & Construction, 2015, 31, 11, 63  crossref(new windwow)
4.
Modeling on Compressive Strength in High Performance Concrete Using Porosity, Journal of the Korea institute for structural maintenance inspection, 2012, 16, 6, 124  crossref(new windwow)
5.
Shrinkage Properties and Potential for Cracking of High-strength Concrete containing High-volume Blast Furnace Slag, Journal of the Architectural Institute of Korea Structure & Construction, 2015, 31, 6, 51  crossref(new windwow)
6.
Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder, Journal of the Korean Recycled Construction Resources Institute, 2015, 3, 3, 237  crossref(new windwow)
7.
Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder, Journal of the Korea Concrete Institute, 2011, 23, 4, 487  crossref(new windwow)
8.
Estimation of the Autogenous Shrinkage of the High Performance Concrete Containing Expansive Additive and Shrinkage Reducing Agent, Journal of the Korean Institute of Building Construction, 2007, 7, 3, 123  crossref(new windwow)
9.
Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar, Journal of the Korean Recycled Construction Resources Institute, 2014, 2, 1, 60  crossref(new windwow)
 References
1.
Mehta, P. K., 'Durability of Concrete in Marine Environment A Review,' Performance of Concrete in Marin Environment, SP-65, V. M. Malhotra, ed., American Concrete Institute, Famington Hills, Mich., 1980, pp.1-15

2.
Nkinamubanzi, P. C. and Aitcin, P. C., 'The Use of Slag in Cement and Concrete in a Sustainable Development Perspective,' WABE International Symposium on Cement and Concrete, Montreal, Quebec, 1999, pp.1 -11

3.
Tazawa, E. and Miyazawa, S., 'Influence of Constituents and Composistion on Autogenous Shrinkage of Cementitious :Materials,' Magazine of Concrete Research, Vol.49, No.1, 1997, pp.15-22 crossref(new window)

4.
Lim, S. N. and Wee, T. H, 'Autogenous Shrinkage of Ground-Granulated Blast Fumace Slag Concrete,' ACI Materials journal, Vol.97, No.5, 2000, pp.537-592

5.
한천구, 김성욱, 고경택, 배정렬, '팽창재 및 수축절감제를 이용한 고성능 콘크리트의 수축특성', 콘크리트학회 논문집, 제15권 6호, 2003, pp.785-793

6.
이회근, 이광명, 김우, '고강도 플라이애쉬 콘크리트의 자기수축 예측 모델', 콘크리트학회 논문집, 15권 1호, 2003, pp.134-142

7.
Lee, H. K., Lee. K. M., and Kim, B. G., 'Autogeous Shrinkage of High-performance Concrete Containing Fly Ash,' Magazine cf Concrete Research, Vol.55, No.6, 2003, pp.507-515 crossref(new window)

8.
Japan Concrete Institute, 'Japan Concrete Institute Report on Autogenous Shrinkage,' E&FN Spon, London and New York, 1998

9.
이회근, 이광명, 김영환, 임현준, '초음파속도를 이용한 콘크리트의 응결 및 초기 강도 추정', 비파괴검사학회지, 22권 3호, 2002, pp.292-303

10.
Lee, H. K., Lee, K. M., Kim, Y. H., Yrrn, H, and Bae, D. B., 'Ultrasonic In Situ Monitoring of Setting Process of High-Performance Concrete,' Cement and Concrete Research, 2004, pp.631 -640