Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model

- Journal title : Journal of the Korea Concrete Institute
- Volume 17, Issue 3, 2005, pp.435-444
- Publisher : Korea Concrete Institute
- DOI : 10.4334/JKCI.2005.17.3.435

Title & Authors

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model

Kim Sang-Woo; Chai Hyee-Dae; Lee Jung-Yoon; Lee Bum-Sik;

Kim Sang-Woo; Chai Hyee-Dae; Lee Jung-Yoon; Lee Bum-Sik;

Abstract

This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Keywords

truss model;shear behavior;reinforced concrete columns;axial force;bending moment;

Language

Korean

References

1.

Vecchio, F. J. and Collins, M. P., 'The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,' ACI Structural Journal, Vol.83, No.2, Mar.-Apr. 1986, pp.219-231

2.

Hsu, T. T. C., 'Softened Truss Model Theory for Shear and Torsion,' ACI Structural Journal, Vol.85, No.6, Nov.-Dec. 1988, pp.624-635

3.

Hsu, T. T. C., 'Nonlinear Analysis of Concrete Membrane Elements,' ACI Structural Journal, Vol. 88, No.5, Sep.-Oct. 1991, pp.552-561

4.

Pang, X. B. and Hsu, T. T. C., 'Fixed Angle Softened Truss Model for Reinforced Concrete,' ACI Structural Journal, Vol.93, No.2, Mar.-Apr. 1996, pp.197-207

5.

Hsu, T. T. C. and Zhang, L. X, 'Nonlinear Analysis of Membrane Elements by Fixed-Angle Softened-Truss Model,' ACI Structural Journal, Vol.97, No.5, Sep.-Oct. 1997, pp.483-492

6.

Vecchio, F. J. and Collins, M. P., The Response of Reutorced Concrete to in-plane Shear and Normal Stresses, Publication 82-03, Dept. of Civil Engineering, University of Toronto, Toronto, Canada, 1982

7.

Vecchio, F. J. and Collins, M. P., 'Predicting the Response of Reinforced Concrete Beam Subjected to Shear Using Modified Compression Field Theory,' ACI Structural Journal, Vol.85, No.3, May-Jun. 1988, pp.258-268

8.

CSA Committe A23.3, Design of Concrete Structures : Structures(Design)-A National Standard of Canada, Canadaian Standards Assocation, Rexdale, Ontario, Dec. 1994., 199pp

9.

MSHTO Subcommittee on Bridges and Structures, AASHTO LRFD Bridge Design Specifications-U.S. Units; 2002 Interim Revisions, Second Edition, American Association of State Highway and Transportation Officials, Washington, D.C., May 2002

10.

Bentz, E. C., Sectional Analysis of Reinforced Concrete Members, Ph.D dissertation, University of Toronto, 2000

11.

Bentz, E. C. and Collins, M. P., 'http://www.civ.utoronto.ca/sect/streng/index3.html,' Web Address of Response, 2000

12.

김상우, 이정윤, '휨모멘트 효과가 고려된 변환각 트러스 모델에 의한 철근콘크리트 보의 전단능력예측,' 콘크리트학회논문집, 14권 6호, 2002. 12, pp.910-921

13.

김상우, 이정윤, '변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측,' 콘크리트학회논문집, 16권 6호, 2004. 12, pp.813-822

14.

Bresler, B. and Pister, K. S., 'Strength of Concrete Under Combined Stresses,' ACI Journal, Proceedings Vol.55, No.3, Sep. 1958, pp.321-345

15.

Park, R. and Pauley, T., Reinforced Concrete Structures, John Wiley & Sons Inc., New York, 1975, 769pp

16.

Haddadin, M. J., Hong, S.-T., and Mattock, A. H., 'Stirrup Effectiveness in Reinforced Concrete Beams with Axial Force,' Proceedings, ASCE, Vol.97, No. ST9, Sep. 1971, pp.2277-2297

17.

Li, B., Shear Transfer Behavior of Cracked Concrete Under Cyclic Leading, Ph.D dissertation, University of Tokyo, 1988, 121pp

18.

Yoshikawa, H., Wu, Z., and Tanabe, T., 'Analytical Model for Shear Slip of Cracked Concrete,' Journal of Structural Engineering, ASCE, Vol.115, No.4, April 1989, pp.771-788

19.

김상우, 적합조건을 고려한 트러스 모델에 의한 철근콘크리트 부재의 전단거동 예측, 박사학위논문, 성균관대학교, 2003, 244pp