Advanced SearchSearch Tips
Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes
Park Ki-Bong;
  PDF(new window)
A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and . The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.
temperature;autogenous shrinkage;relative humidity;pore size distribution;
 Cited by
Powers, T.C., and Brownyard, T.L., 'Studies of the Physical Properties of Hardened Portland Cement Paste. IX. General Summary of Findings on the Properties of Hardened Portland Cement Paste,' ACI Journal, Vol.18, 1947, pp.971-92

Tazawa, E., Matsuoka, Y., Miyazawa, S. and Okamoto, S., 'Effect of Autogenous Shrinkage on Self Stress in Hardening Concrete,' Proc. Int. Symp. Thermal Cracking in Concrete at Early Ages, RILEM Proc. 25, 1995, pp.221-228

Tomosawa, E, Noguchi, T, Park, K.-B, Sano, H, Yamazaki, N., Hasida, N., and Kuroda, Y., 'Experimental Determination and Analysis of Stress and Strain Distribution of Reinforced High-Strength Concrete Column Caused by Selfdesiccation and Heat of Hydration,' Proc. Int. Seminar: Self-desiccation and Its Importance in Concrete Technology, Lund Univ., Sweden, 1997, pp.99- 115

Jensen, O.J., and Hansen, P.E., 'Influence of Temperature on Autogenous Deformation and Relative Humidity Change in Hardening Cement Paste,' Cement and Concrete Research, Vol.29,1999, pp.567-575 crossref(new window)

Jensen, O.J., and Hansen, P.E., 'Autogenous Relative Humidity Change in Silica Fume-modified Cement Paste,' Advances in Cement Research, Vol. 7, No.25, 1995, pp.33-38 crossref(new window)

Park, K.B, Noguchi, T., and Tomosawa, E, 'A study of hydration ratio and autogenous shrinkage of cement paste,' Proc. Autoshink'98 International Workshop on Autogenous Shrinkage of Concrete, Edited by Tazawa, E&FN Spon, London, 1998, pp.299-308

Baron, J., and Buil, M., 'Mechanical Features of Chemical Shrinkage of Cement Paste,' Cement and Concrete Research, Vol.9, 1979, pp.545-547 crossref(new window)

Nilsson, N.O., Temperature Effects in Relative Humidity Measurements on Concrete-some Preliminary Studies, The Moisture Research Group Informs, Report 1987: 1 The Swedish Council of Building Research, Stockholm, 1987, 84pp

Persson, B., 'Self-desiccation and Its Importance in Concrete Technology,' Materials and Structures, Vol.30, 1997, pp.293-305 crossref(new window)

Hua, C., Acker, P., and Ehrlacher, A., 'Analyses and Models of the Autogenous Shrinkage of Hardening Cement Paste I. Modeling at Macroscopic Scale,' Cement and Concrete Research, Vol.25, No.7, 1995, pp.1458- 1468

Koenders, E.A.B., Simulation of Volume Changes in Hardening Cement-based Materials, Doctoral Thesis, Delft University of Technology, The Netherlands, 1997

Kovler, K., 'Why Sealed Concrete Swells', ACI Materials Journal, Vol.93, No.4, Jul.-Aug. 1996, pp.334-340

Parrott, L.J., 'Measurement and Modeling of Porosity in Drying Cement Paste,' Microstructural Development during Hydration of Cement, Material Research Society, Pittsburgh, Vol.85, 1987, pp.91-104

Fisher, L.R., 'Force due to Capillary-condensed Liquids: Limits of Calculation from Thermodynamics,' Advances in Colloid and Interface Science, Vol.16, 1982, pp.117- 125 crossref(new window)