Advanced SearchSearch Tips
Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep
Ahn, Sung-Soo; Sung, Won-Jin; Kang, Byeong-Su; Lee, Yong-Hak;
  PDF(new window)
An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.
creep;shrinkage;incremental constitutive law;double composite girder;finite element analysis;
 Cited by
터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구,박성우;박승수;황인백;차철준;

한국구조물진단유지관리공학회 논문집, 2012. vol.16. 5, pp.19-28 crossref(new window)
A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel, Journal of the Korea institute for structural maintenance and inspection, 2012, 16, 5, 19  crossref(new windwow)
성원진, 김정현, 이용학, '단면해석법을 이용한 휨부재의 재령종속적 처짐해석', 콘크리트학회 논문집, 16권 2호, 2004. 4, pp.155-162

Bradford, M. A., 'Deflections of Composite Steel-Concrete Beams Subject to Creep and Shrinkage', ACI Structural Journal, Vol.88, No.5, 1991, pp.610-614

Bradford, M. A., 'Shrinkage Behavior of Steel-Concrete Composite Beams', ACI Structural Journal, Vol.94, No.6, 1997, pp.625-632

Chiu, H. S., Chern, J. C., and Chang, K. C., 'Long- Term Deflection Control in Cantilever Prestressed Concrete Bridges', Journal of Engrg. Mech., Vol.122, No.6, 1993, pp.495-501

Ghali, A. and Azamejad, A. 'Deflection Prediction of Members of Any Concrete Strength', ACI Structural Journal, VoI.96, No.5, 1999, pp.807-816

Gilbert, R. I. and Bradford, M. A., 'Time-Dependent Behavior of Continuous Beams at Service Loads', Journal of Str. Engrg, ASCE, Vol.121, No.2, 1995, pp.319-327 crossref(new window)

Kwak, H. G. and Sea, Y. J., 'Long- Term Behavior of Composite Girder Bridges', Computers & Structures, Vol.74, No.5, 2000, pp.583-599 crossref(new window)

Bazant, Z. P. 'Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method', ACI Structural Journal, Vol.69, No.4, 1972, pp.212-217

Rusch, H., Jungwirth, D., and Hilsdorf, H. K., Creep and Shrinkage Their Effect on the Behavior of Concrete Structures, Springer-verlag, New York, Heidelberg, Berlin, 1983

Chern, J.C., Wu, Y.G., Chan, Y.W., and Chou, T.Y., Long Term Behavior of a Composite Prestressed Concrete Railway Bridge: Part II-Constitutive Law and Analysis, ACI SP 129-7, 1991, pp.115-142

Kawano, A. and Warner, R.F., 'Model Fonnulations for Numerical Creep Calculations for Concrete', Journal of Str. Engrg. ASCE, Vol.122, No.3, 1992, pp.284-290

Jendele, L. and Phillips, D. V., 'Finite Element Software for Creep and Shrinkage in Concrete', Computers & Structures, Vol.45, No.1, 1992, pp.113-126 crossref(new window)

Pisani, M. A., 'Numerical Analysis of Creep Problems', Computers and Structures, Vol.51, No.1, 1996, pp.57-63 crossref(new window)

Lee, Y. H. and Seong, K. W., 'Age Dependent Incremental Tangent Material Law of Concrete', Journal of Engrg. Mech., ASCE, 2005(submitted for publication)

안성수, 콘크리트의 재령종속적 재료특성에 관한 수치적 모델링, 건국대학교 박사학위 논문, 2002