JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development Length of GFRP Rebars Based on Pullout Test
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development Length of GFRP Rebars Based on Pullout Test
Choi, Dong-Uk; Ha, Sang-Su; Lee, Chang-Ho;
  PDF(new window)
 Abstract
The development length equations of the GFRP rebars are suggested based on the pullout tests performed in this study. A total of 48 pullout and modified pullout tests were completed. Test variables included embedment length (L=10, 15, 20, and ), vertical and horizontal installation of the rebars, height of the rebars (H=100 and 300 mm), and cover thickness . D13 GFRP rebars domestically developed were used in the experimental program. The average of the bond strength of all vertically installed GFRP rebars was 6.39 MPa with a 5% fractile of 4.63 MPa. A basic development length equation was derived that resulted in an equation equivalent to the one proposed in the ACI 440.1R-03. Careful reevaluation of the bond strength using the modified pullout test indicated that a modification of the design equation was necessary so that the basic development length increases by 11%. The top bar effect of the horizontally installed rebars as well as the effect of the cover thickness were determined and included in the set of suggested equations. Since the current equations were derived from testing rebars embedded in relatively low strength concrete , they result in conservative development lengths when applied to bars embedded in higher strength concretes.
 Keywords
GFRP rebar;pullout test;development length;modified pullout test;top bar effect;
 Language
Korean
 Cited by
1.
CFRP 보강근의 부착강도에 대한 실험적 연구,이영학;최준호;김희철;김동혁;나성준;

대한건축학회논문집:구조계, 2008. vol.24. 11, pp.53-60
2.
쪼갬파괴된 GFRP 하부근과 상부근의 정착길이 산정식 비교,하상수;윤준선;

한국건축시공학회지, 2009. vol.9. 6, pp.141-149 crossref(new window)
3.
RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안,최동욱;천성철;하상수;

한국콘크리트학회논문집, 2009. vol.21. 1, pp.65-74 crossref(new window)
4.
GFRP 보강근의 정착길이 설계식 제안,하상수;최동욱;

한국콘크리트학회논문집, 2010. vol.22. 1, pp.131-141 crossref(new window)
5.
쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이,천성철;최동욱;

한국콘크리트학회논문집, 2010. vol.22. 4, pp.519-525 crossref(new window)
6.
다방향 GFRP 플레이트의 인장강도 분석을 위한 시험 방법 제안에 관한 연구,심종성;권혁우;이형호;김현중;

한국콘크리트학회논문집, 2011. vol.23. 6, pp.799-808 crossref(new window)
7.
경량콘크리트의 부착특성에 대한 실험적 연구,조장세;나성준;김민숙;이영학;김희철;

한국전산구조공학회논문집, 2011. vol.24. 1, pp.43-53
8.
인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동,유영준;박영환;김형열;최진원;김장호;

한국콘크리트학회논문집, 2013. vol.25. 2, pp.187-194 crossref(new window)
9.
경량콘크리트와 GFRP 보강근의 부착 특성,손병락;김명식;김충호;장희석;

한국구조물진단유지관리공학회 논문집, 2013. vol.17. 6, pp.112-121 crossref(new window)
1.
Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure, Journal of the Korea Institute of Building Construction, 2009, 9, 6, 141  crossref(new windwow)
2.
Mechanical properties of GFRP slip-form for in-situ application, KSCE Journal of Civil Engineering, 2016, 20, 5, 1842  crossref(new windwow)
3.
The Suggestion of Testing Method for Analysis of Tensile Strength of Multi-Directional GFRP Plate, Journal of the Korea Concrete Institute, 2011, 23, 6, 799  crossref(new windwow)
4.
Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member, Journal of the Korea Concrete Institute, 2013, 25, 2, 187  crossref(new windwow)
5.
Bond Characteristic Between Lightweight Concrete and GFRP Bar, Journal of the Korea institute for structural maintenance and inspection, 2013, 17, 6, 112  crossref(new windwow)
 References
1.
Japan Society of Civil Engineers (JSCE), Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Concrete Engineering Series No.23, 1997

2.
Architectural Institute of Japan, Design and Construction Guideline of Continuous Fiber Reinforced Concrete, AU, 2001

3.
ISIS Canada, Reinforcing Concrete Structures with Fibre Reinforced Polymers, Design Manual No.3, 2001, 156pp

4.
CANICSA S806-02, Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standard Association, Rexdale, Ontario, Canada, 2002: Annex H, Test Method for Bond Strength of FRP Rods by Pullout Testing

5.
ACI 440 Committee, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI440.IR03), American Concrete Institute, Detroit, Michigan, 2003

6.
ACI 440 Committee, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI440.IR06), American Concrete Institute, Detroit, Michigan, 2006

7.
한국건설기술연구원, FRP 복합재료 보강재 개발 및 이 를 활용한 콘크리트 구조물 건설기술 개발, 1차년도 최종 보고서, 2004, pp.53-209

8.
한국건설기술연구원, FRP 복합재료 보강재 개발 및 이 를 활용한 콘크리트 구조물 건설기술 개발, 2차년도 최 종 보고서, 2005, pp.35-339

9.
박석균, 김대훈, '콘크리트 파괴 자가진단을 위한 하이 브리드 FRP 보강근의 적용 특성', 콘크리트학회 논문집, 18권 3호, 2006, pp.439-445

10.
유영준, 박지선, 박영환, 김긍환, '유리와 탄소섬유로 제작 된 하이브리드 FRP 로드의 인장특성에 관한 실험연구', 콘크리트학회 논문집, 18권 2호, 2006, pp.275-282

11.
Eshani M. R., Saadatmanesh H., and Tao S., 'Design Recommendations for Bond of GFRP Rebars to Concrete', ASCE J. of Structural Engineering, Vol.122, No.3, 1996, pp.247-254 crossref(new window)

12.
ASTM D3916-02, Standard Test Method for Tensile Properties of Pulltruded Glass-Fiber-Reinforced-Plastic Rods, American Society of Testing Materials, 2002

13.
ACI Committee 355, Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-04), American Concrete Institute, Detroit, Michigan, 2004

14.
박찬기, 원종필, 강주원, '콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안', 콘크리트학회 논문집, 16권 4호, 2004, pp.529-539