Advanced SearchSearch Tips
Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers
Lim, Woo-Young; Hong, Sung-Gul;
  PDF(new window)
In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.
ultra-high performance concrete;fracture behavior;initial cracking strength;tensile strength;fracture energy;
 Cited by
Kang, S. T., "Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites", Journal of the Korea Concrete Institute, Vol.24, No.5, 2012, pp.525-533. crossref(new window)

Kang, S. T., and Ryu G. S., "The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC)", Journal of the Korea Concrete Institute, Vol.23, No.1, 2011, pp.67-75. crossref(new window)

Association Francaise du Genil Civil (AFGC) Betons fibres aultra-hautes performances. Association Francaise du Genil Civil, France, 2013, p.357.

Korea Concrete Institute, Design Recommendations for Ultra-High Performance Concrete K-UHPC, KCI-M-12-003, Korea, 2012, p.66.

Swamy, R. N., Mangat, P. S., and Rao, C. V. S. K., "The Mechanics of Fiber Reinforcement of Cement Matrices," An International Symposium: Fiber Reinforced Concrete, American Concrete Institute, Detroit, USA, 1974, pp.1-28.

Song, P. S. and Hwang, S., "Mechanical Properties of High- Strength Steel Fiber-Reinforced Concrete," Construction and Building Materials, Vol.18, Issue 9, 2004, pp.669-673. crossref(new window)

Jeng, F., Lin, M. L., and Yuan, S. C., "Performance of Toughness Indices for Steel Fiber Reinforced Shotcrete", Tunnelling and Underground Space Technology, Vol.17, 2002, pp.69-82. crossref(new window)

Wafa, F. F. and Ashour, S. A., "Mechanical Properties of High-Strength Fiber Reinforced Concrete", ACI Materials Journal, Vol.89, No.5, 1992, pp.449-455.

Chun, H. M. and Kim, Y. I., "Strength Characteristics and Toughness of Steel Fiber-Reinforced High-Strength Concrete", Journal of the Architectural Institute of Korea, Vol.24, No.2, 2004, pp.455-458.

Yoon, E. S. and Park, S. B., "An Experimental Study on the Mechanical Properties and Long-Term Deformations of High- Strength Steel Fiber Reinforced Concrete," Journal of the Korean Society of Civil Engineers, Vol.26, No.2A, 2006, pp.401-409.

Oh, Y. H., "Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers", Journal of the Korea Concrete Institute, Vol.20, No.4, 2008, pp.531-539. crossref(new window)

Park, S. H., Kim D. J., Ryu, G. S., and Koh, K. T., "Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete", Cement & Concrete Composites 34, 2012, pp.172-184. crossref(new window)

Olivito, R. S., and Zuccarello, F. A., "An Experimental Study on the Tensile Strength of Steel Fiber Reinforced Concrete", Composites: Part B, 41, 2010, pp.246-255.

Hassan, A. M. T., Jones, S. W., and Mahmud, G. H., "Experimental Test Methods to Determine the Uniaxial Tensile and Compressive Behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC)", Construction and Building Materials, 37, 2012, pp.874-882. crossref(new window)

Visalvanich K., and Naaman, A. E., "Fracture Model for Fiber Reinforced Concrete", ACI Journal, Vol.80, No.2, 1983, pp.128-138.

Bazant, Z. P., and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, Florida, USA, 1998, p.616.

Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," Journal of Mechanics and Physics of Solids, Vol.8, 1960, pp.100-104. crossref(new window)

Barenblatt, G. I., "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture", Advances in Applied Mechanics, Academic Press, New York, 1962, Vol.7, pp.55-129. crossref(new window)

Hillerborg, A., J Modeer, M., and Petersson, P. -E., "Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements", Cement and Concrete Research, Vol.6, No.6, 1976, pp.773-782. crossref(new window)