JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE
Cho, Dong Hyun;
  PDF(new window)
 Abstract
Let denote the function space of all real-valued continuous paths on . Define and by $X_n(x)
 Keywords
analogue of Wiener measure;analytic conditional Feynman integral;analytic conditional Fourier-Feynman transform;analytic conditional Wiener integral;conditional convolution product;
 Language
English
 Cited by
 References
1.
R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.

2.
K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song and I. Yoo, Conditional Fourier- Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235. crossref(new window)

3.
S. J. Chang and D. Skoug, The effect of drift on conditional Fourier-Feynman transforms and conditional convolution products, Int. J. Appl. Math. 2 (2000), no. 4, 505-527.

4.
D. H. Cho, A time-independent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Honam J. Math. (2013), to appear.

5.
D. H. Cho, A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. (2012), submitted.

6.
D. H. Cho, A conditional integral transform and conditional convolution product on a function space, Integral Transforms Spec. Funct. 23 (2012), no 6, 405-420. crossref(new window)

7.
D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59 (2009), no. 2, 431-452. crossref(new window)

8.
D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. crossref(new window)

9.
D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an Lp theory, J. Korean Math. Soc. 41 (2004), no. 2, 265-294. crossref(new window)

10.
D. H. Cho, B. J. Kim and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438. crossref(new window)

11.
M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. crossref(new window)

12.
M. J. Kim, Conditional Fourier-Feynman transform and convolution product on a function space, Int. J. Math. Anal. 3 (2009), no. 10, 457-471.

13.
K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951. crossref(new window)

14.
K. S. Ryu, M. K. Im, and K. S. Choi, Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15 (2009), no. 3, 319-337.