JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE RELATION BETWEEN HENSTOCK INTEGRAL AND HENSTOCK DELTA INTEGRAL ON TIME SCALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE RELATION BETWEEN HENSTOCK INTEGRAL AND HENSTOCK DELTA INTEGRAL ON TIME SCALES
Park, Jae Myung; Lee, Deok Ho; Yoon, Ju Han; Kim, Young Kuk; Lim, Jong Tae;
  PDF(new window)
 Abstract
In this paper, we define an extension of a function for a time scale and show that is Henstock delta integrable on if and only if is Henstock integrable on .
 Keywords
time scales;Henstock delta integral;-gauge;
 Language
English
 Cited by
1.
CONVERGENCE THEOREMS FOR THE HENSTOCK DELTA INTEGRAL ON TIME SCALES,;;;;;

충청수학회지, 2013. vol.26. 4, pp.879-885 crossref(new window)
2.
THE RIEMANN DELTA INTEGRAL ON TIME SCALES,;;;;;

충청수학회지, 2014. vol.27. 2, pp.327-333 crossref(new window)
3.
THE RELATION BETWEEN MCSHANE INTEGRAL AND MCSHANE DELTA INTEGRAL,;;;;;

충청수학회지, 2014. vol.27. 1, pp.113-121 crossref(new window)
4.
THE Mα-DELTA INTEGRAL ON TIME SCALES,;;;;

충청수학회지, 2014. vol.27. 4, pp.661-674 crossref(new window)
5.
THE LEBESGUE DELTA INTEGRAL,;;;;

충청수학회지, 2014. vol.27. 3, pp.489-494 crossref(new window)
1.
THE RELATION BETWEEN MCSHANE INTEGRAL AND MCSHANE DELTA INTEGRAL, Journal of the Chungcheong Mathematical Society, 2014, 27, 1, 113  crossref(new windwow)
2.
THE LEBESGUE DELTA INTEGRAL, Journal of the Chungcheong Mathematical Society, 2014, 27, 3, 489  crossref(new windwow)
3.
CONVERGENCE THEOREMS FOR THE HENSTOCK DELTA INTEGRAL ON TIME SCALES, Journal of the Chungcheong Mathematical Society, 2013, 26, 4, 879  crossref(new windwow)
4.
THE RIEMANN DELTA INTEGRAL ON TIME SCALES, Journal of the Chungcheong Mathematical Society, 2014, 27, 2, 327  crossref(new windwow)
5.
THE Mα-DELTA INTEGRAL ON TIME SCALES, Journal of the Chungcheong Mathematical Society, 2014, 27, 4, 661  crossref(new windwow)
 References
1.
R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22. crossref(new window)

2.
S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. Vol 16 (2006), no. 3, 77-98.

3.
G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. crossref(new window)

4.
G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl., 8 (2002), 1001-1027. crossref(new window)

5.
J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta Integrals, Chungcheng J. Math. Soc. 26 (2013), no. 2, 291-298.

6.
A. Perterson and B. Thompson, HenstockCKurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178. crossref(new window)

7.
Charles W. Swartz, Douglas S Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.

8.
B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math J. Vol 18 (2008), no. 1, 1-19.