JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE FAILURE OF GORENSTEINESS FOR THE SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE FAILURE OF GORENSTEINESS FOR THE SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)
Ahn, Jeaman;
  PDF(new window)
 Abstract
In [9], the authors determine an infinite class of non-unimodal Gorenstein sequence, which includes the example $$\bar{h}_1\text{
 Keywords
Gorenstein algebra;Hilbert function;Unimodality;binomial expansion;
 Language
English
 Cited by
 References
1.
D. Bernstein and A. Iarrobino, A non-unimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323-2336. crossref(new window)

2.
A. M. Bigatti and A. V. Geramita, Level Algebras, Lex Segments and Minimal Hilbert Functions, Comm. Algebra 31 (2003), 1427-1451. crossref(new window)

3.
M. Boij, Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys, Comm. Algebra 23 (1995), no. 1, 97-103. crossref(new window)

4.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge studies in advanced Mathematics, 39, Revised edition (1998), Cambridge, U.K.

5.
M. Boij and D. Laksov, Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1083-1092. crossref(new window)

6.
M. Green. Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann. In Algebraic curves and projective geometry (Trento, 1988), volume 1389 of Lecture Notes in Math., pages 76-86. Springer, Berlin, 1989.

7.
M. Kreuzer and L. Robbiano. Computational commutative algebra. 2. Springer-Verlag, Berlin, 2005.

8.
F. S. Macaulay, The algebraic theory of modular systems, Revised reprint of the 1916 original. With an introduction by Paul Roberts. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994.

9.
J. Migliore, U. Nagel, and F. Zanello, Bounds and asymptotic minimal growth for Gorenstein Hilbert functions, J. Algebra 321 (2009), no. 5, 1510-1521. crossref(new window)

10.
J. Migliore, U. Nagel, and F. Zanello, On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762. crossref(new window)

11.
R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83. crossref(new window)

12.
F. Zanello, Stanley's theorem on codimension 3 Gorenstein h-vectors, Proc. Amer. Math. Soc. 134 (2006), no. 1, 5-8 (electronic) crossref(new window)

13.
J. Migliore(1-NDM), U. Nagel(1-KY), and F. Zanello(1-NDM), On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley. (English sum- mary) Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762. crossref(new window)