JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION
Yi, Dokkyun; Kim, Hyunsook;
  PDF(new window)
 Abstract
In this paper, a general Weighted Essentially Non-Oscillatory (WENO) interpolation is proposed and applied to a semi-Lagrangian method. The proposed method is based on the conservation law, and characteristic curves are used to complete the semi-Lagrangian method. Therefore, the proposed method satisfies conservation of mass and is free of the CFL condition which is a necessary condition for convergence. Using a several standard examples, the proposed method is compared with the third order Strong Stability Preserving (SSP) Runge-Kutta method to verify the high-order accuracy.
 Keywords
interpolation;WENO;semi-Lagrangian;
 Language
English
 Cited by
 References
1.
J. P. Boris and D. L. Book, Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works, Journal of Computational Physics 11 (1973), 38-69. crossref(new window)

2.
C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in con-figuration space, Journal of Computational Physics 22 (1976), 330-351. crossref(new window)

3.
E. Fijalkow, A numerical solution to the Vlasov equation, Computer Physics Communications 116 (1999), 319-328. crossref(new window)

4.
F. Filbet, E. Sonnendrucker, and P. Bertand, Conservative numerical schemes for the Vlasov equation, Journal of Computational Physics 172 (2001), 166-187. crossref(new window)

5.
F. Filbet, E. Sonnendrucker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications 151 (2003), 247-266.

6.
S. Gottlieb, D. I. Ketcheson, and C. -W. Shu, High order strong stability preserving time discretizations, Journal of Scientific Computing 38 (2009), 251-289. crossref(new window)

7.
S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability preserving high order time discretization methods, SIAM Review 43 (2001), 89-112. crossref(new window)

8.
G.-S. Jiang and C.-W. Shu, Ecient implementation of weighted ENO schemes, Journal of Computational Physics 126 (1996), no. 1, 202-228. crossref(new window)

9.
X.-D. Liu and S. Osher, Non-oscillatory high order accurate self similar maximum principle satisfying shock capturing schemes, SIAM Journal on Numerical Analysis 33 (1996), 760-779. crossref(new window)

10.
X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics 115 (1994), 200-212. crossref(new window)

11.
C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on Scientific Computing 9 (1988), 1073-1084. crossref(new window)

12.
C.-W. Shu and S. Osher, Ecient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics 77 (1988), no. 2, 439-471. crossref(new window)

13.
C.-W. Shu and S. Osher, Ecient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics 83 (1989), no. 1, 32-78. crossref(new window)

14.
E. Sonnendrucker, J. Roche, P. Bertand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of Vlasov equations, Journal of Computational Physics 149 (1998), 201-220.

15.
T. Umeda, A conservative and non-oscillatory scheme for Vlasov code simulations, Earth Planets Space 60 (2008), 773-779. crossref(new window)