JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRINCIPAL FIBRATIONS AND GENERALIZED H-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRINCIPAL FIBRATIONS AND GENERALIZED H-SPACES
Yoon, Yeon Soo;
  PDF(new window)
 Abstract
For a map , there are concepts of -spaces, -spaces, which are generalized ones of H-spaces [17,18]. In general, Any H-space is an -space, any -space is a -space. For a principal fibration induced by from , we obtain some sufficient conditions to having liftings -structures and -structures on of -structures and -structures on X respectively. We can also obtain some results about -spaces and -spaces in Postnikov systems for spaces, which are generalizations of Kahn`s result about H-spaces.
 Keywords
-spaces;-spaces for maps;Postnikov systems;
 Language
English
 Cited by
 References
1.
J. Aguade, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955. crossref(new window)

2.
B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, ibid 248 (1959), 2054-2558.

3.
D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856. crossref(new window)

4.
D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. crossref(new window)

5.
H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.

6.
P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Pub., 1965.

7.
D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.

8.
D. W. Kahn, A note on H-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300-307.

9.
K. L. Lim, On cyclic maps, J. Austral. Math. Soc. (Series A) 32 (1982), 349-357. crossref(new window)

10.
K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71. crossref(new window)

11.
R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, New York, 1968.

12.
N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.

13.
M. Postnikov, On the homotopy type of polyhedra, Dokl. Akad. Nauk. SSSR 76 (1951), no. 6, 789-791.

14.
K. Varadarajan, Generalized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.

15.
G. W. Whitehead, Elements of homotopy theory, Springer-Verlag, New York Inc., 1978.

16.
M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc. (Series A) 59 (1995), 193-203. crossref(new window)

17.
Y. S. Yoon, $H^f$-spaces for maps and their duals, J. Korea Soc. Math. Edu. Series B 14, no. 4, 287-306.

18.
Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc. 20 (2007), no. 3, 245-259.

19.
Y. S. Yoon, $G^f$-spaces for maps and Postnikov systems, J. Chungcheong Math. Soc. 22 (2009), no. 4, 831-841.

20.
Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci. Math. Japon. 55 (2002), no. 1, 139-148.