JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SOLUTION SET FOR CONVEX OPTIMIZATION PROBLEM WITH CONVEX INTEGRABLE OBJECTIVE FUNCTION AND GEOMETRIC CONSTRAINT SET
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SOLUTION SET FOR CONVEX OPTIMIZATION PROBLEM WITH CONVEX INTEGRABLE OBJECTIVE FUNCTION AND GEOMETRIC CONSTRAINT SET
Lee, Gue Myung; Lee, Jae Hyoung;
  PDF(new window)
 Abstract
In this paper, we consider a convex optimization problem with a convex integrable objective function and a geometric constraint set. We characterize the solution set of the problem when we know its one solution.
 Keywords
solution set;subdifferential;convex optimization problem;convex integrable objective function;geometric constraint set;
 Language
English
 Cited by
 References
1.
J. -P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser Boston, 1990.

2.
J. V. Burke and M. Ferris, Characterization of solution sets of convex programs, Oper. Res. Lett. 10 (1991), 57-60. crossref(new window)

3.
M. Castellani and M. Giuli, A characterization of the solution set of pseudoconvex extremum problems, J. Convex Anal. 19 (2012), 113-123.

4.
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, Inc., 1998.

5.
V. Jeyakumar, G. M. Lee, and N. Dinh, Lagrange multiplier conditions characterizing optimal solution sets of cone-constrained convex programs, J. Optim. Theor. Appl. 123 (2004), 83-103. crossref(new window)

6.
V. Jeyakumar, G. M. Lee, and N. Dinh, Characterizations of solution sets of convex vector minimization problems, Eur. J. Oper. Res. 174 (2006), 1380-1395. crossref(new window)

7.
V. Jeyakumar, G, M. Lee, and G. Li, Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty, J. Optim. Theory Appl. 164 (2015), 407-435. crossref(new window)

8.
V. Jeyakumar and X. Q. Yang, On characterizing the solution sets of pseudolinear programs, J. Optim. Theory Appl. 87 (1995), 747-755. crossref(new window)

9.
C. S. Lalitha and M. Mehta, Characterizations of solution sets of mathematical programs in terms of Lagrange multipliers, Optimization 58 (2009), 995-1007. crossref(new window)

10.
O. L. Mangasarian, A simple characterization of solution sets of convex programs, Oper. Res. Lett. 7 (1988), 21-26. crossref(new window)

11.
J. P. Penot, Characterization of solution sets of quasiconvex programs, J. Optim. Theory Appl. 117 (2003), 627-636. crossref(new window)

12.
T. Q. Son and N. Dinh, Characterizations of optimal solution sets of convex infinite programs, TOP. 16 (2008), 147-163. crossref(new window)

13.
Z. L. Wu and S. Y. Wu, Characterizations of the solution sets of convex programs and variational inequality problems, J. Optim. Theory Appl. 130 (2006), 339-358.

14.
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, 2002.

15.
K. Q. Zhao and X. M. Yang, Characterizations of the solution set for a class of nonsmooth optimization problems, Optim. Lett. 7 (2013), 685-694. crossref(new window)