JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION
Chung, Seiyoung; Kwon, SunJoo; Oh, SeYoung;
  PDF(new window)
 Abstract
To obtain more accurate approximation of the true images in the deblurring problems, the weighted global generalized cross validation(GCV) function to the inverse problem with multiple right-hand sides is suggested as an efficient way to determine the regularization parameter. We analyze the experimental results for many test problems and was able to obtain the globally useful range of the weight when the preconditioned global conjugate gradient linear least squares(Gl-CGLS) method with the weighted global GCV function is applied.
 Keywords
weighted global GCV;preconditioned Gl-CGLS;image deblurring;Tikhonov regularization;
 Language
English
 Cited by
 References
1.
J. Chung, J. G. Nagy, and D. P. O'Leary, A weighted GCV method for Lanczos hybrid regularization, Electronic Trans. on Numer. Anal. 28 (2008), 149-167.

2.
S. Y. Chung, S. Y. Oh, S. J. Kwon, Restoration of blurred images by global least squares method, J. of Chungcheong Math. Soc. 22 (2009), 177-186.

3.
P. C. Hansen, Analysis of Discrete Ill-Posed Problems by means of the L-Curve, SIAM Review, 34 (1992), 561-580. crossref(new window)

4.
P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, 1998.

5.
P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.

6.
P. C. Hansen, Regularization tools 4.0 for Matlab 7.3, Numerical Algorithms 46 (2007), no. 2, 189-194. crossref(new window)

7.
M. R. Hesenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. of Research of the National Bureau of Standards, 49 (1952), 409-436. crossref(new window)

8.
Y. Kim and C. Gu, Smoothing spline Gausian regression: More scalable computaiton via efficient approximation, J. Roy. Stat. Soc. 66 (2004), 337-356. crossref(new window)

9.
J. G. Nagy, K.apalmer, and L. Perrone, Iterative methods for image deblurring: a Matlab object oriented approach, Numer. Alg. 36 (2004), 73-93. crossref(new window)

10.
M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comp. 21 (1999), no. 3, 851-866. crossref(new window)

11.
S. Y. Oh, S. J. Kwon, and J. H. Yun, Image restoration by the global conjugate gradient least squares method, J. Appl. Math. & Informatics 31 (2013), 353-363. crossref(new window)

12.
S. Y. Oh and S. J. Kwon, Preconditioned Gl-CGLS method using regularization parameters chosen from the global generalized cross validation, J. of Chungcheong Math. Soc. 27 (2014), 675-688. crossref(new window)

13.
M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov regularization, Journal of Computational and Applied Mathematics 231 (2009) 914-924. crossref(new window)

14.
G. Wahba, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14 (1977), 651-667. crossref(new window)