JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON DELTA ALPHA DERIVATIVE ON TIME SCALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON DELTA ALPHA DERIVATIVE ON TIME SCALES
Zhao, Dafang; You, Xuexiao; Cheng, Jian;
  PDF(new window)
 Abstract
In this paper, we define and study the delta alpha derivative on time scales. Many basic properties of delta alpha derivative will be obtained.
 Keywords
delta alpha derivative;delta derivative;time scales;
 Language
English
 Cited by
 References
1.
K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.

2.
K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York and London, 1974.

3.
I. Podlubny, Fractional differential equations. Academic Press, San Diego, 1999.

4.
J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.

5.
R. Herrmann, Fractional Calculus:An Introduction for Physicists, World Scientific, Singapore, 2014.

6.
I. Tejado, D. Valrio, and N. Valrio, Fractional Calculus in Economic Growth Modelling: The Spanish Case, Controlo2014 C Proceedings of the 11th Portuguese Conference on Automatic Control Lecture Notes in Electrical Engineering, 2015, 321, 449-458.

7.
R. P. Meilanov and R. A. Magomedov, Thermodynamics in Fractional Calculus, Journal of Engineering Physics and Thermophysics, 87(6) (2014), 1521-1531. crossref(new window)

8.
A. Carpinteri, P. Cornetti, and A. Sapora, Nonlocal elasticity: an approach based on fractional calculus, Meccanica 49(11) (2014), 2551-2569. crossref(new window)

9.
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264 (2014), 57-66.

10.
M. Bohner and A. Peterson, Dynamic equations on time scales. An introduction with applications, Birkhauser, Boston, 2001.

11.
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2004.

12.
S. Hilger, Ein MaBkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. Thesis, Universtat Wurzburg, 1988.

13.
S. Hilger, Analysis on measure chains- A unified approach to continuous and discrete calculus, Results Math. (18) (1990), 18-56. crossref(new window)

14.
M. Bohner and G. S. Guseinov, The convolution on time scales, Abstr. Appl. Anal. Vol. 2007, Article ID 58373, 24 pages.

15.
A. Peterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integrals,, J. Math. Anal. Appl. 323 (2006), 162-178. crossref(new window)

16.
X. You and D. Zhao, On convergence theorems for the McShane integral on time scales, J. Chungcheong Math. Soc. 25 (2012), no. 3, 393-400. crossref(new window)

17.
X. You, Ch. Jian, and D. Zhao, On strong $M_{\alpha}$ integral of Banach-valued functions, J. Chungcheong Math. Soc. 26 (2013), no. 2, 259-268. crossref(new window)

18.
D. Zhao, X. You, and Ch. Jian, The Riemann-Stieltjes diamond-alpha integral on Time Scales, J. Chungcheong Math. Soc. 28 (2015), no. 1, 53-63. crossref(new window)

19.
C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, 2015.