JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES
Arunkumar, Mohan; Bodaghi, Abasalt; Rassias, John Michael; Sathya, Elumalai;
  PDF(new window)
 Abstract
In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y)
 Keywords
Banach space;decic functional equation;generalized Ulam-Hyers stability;generalized 2-normed space;random normed space;
 Language
English
 Cited by
 References
1.
M. Acikgoz, A review on 2-normed structures, Int. J. Math. Anal. 1 (2007), no. 4, 187-191.

2.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

3.
C. Alsina, On the stability of a functional equation arising in probabilistic normed spaces, General Inequal., Oberwolfach 5, 263-271 (1986). Birkhuser, Basel (1987).

4.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66. crossref(new window)

5.
M. Arunkumar, M. J. Rassias, and Y. Zhang, Ulam-Hyers stability of a 2-variable AC-mixed type functional equation: direct and fixed point methods, J. Mod. Math. Front. 1 (2012), no. 3, 10-26.

6.
M. Arunkumar and S. Karthikeyan, Solution and Intuitionistic Fuzzy stability of n-dimensional quadratic functional equation: Direct and Fixed Point Methods, Int. J. Adv. Math. Sci. 2 (2014), no. 1, 21-33.

7.
M. Arunkumar and T. Namachivayam, Stability of a n-dimensional additive functional equation in random normed space, Int. J. Math. Anal. 4 (2012), no. 2, 179-186.

8.
J. Baker, A general functional equation and its stability, Proc. Amer. Math. Soc. 133 (2005), no. 6, 1657-1664. crossref(new window)

9.
J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc. 112 (1991), 729-732. crossref(new window)

10.
A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317. crossref(new window)

11.
A. Bodaghi, Stability of a mixed type additive and quartic functional equation, Filomat. 28 (2014), no. 8, 1629-1640. crossref(new window)

12.
A. Bodaghi, Stability of a quartic functional equation, The Scientific World Journal. 2014, Art. ID 752146, 9 pages, doi:10.1155/2014/752146. crossref(new window)

13.
A. Bodaghi, I. A. Alias, and M. Eshaghi Gordji, On the stability of quadratic double centralizers and quadratic multipliers: A fixed point approach, J. Inequal. Appl. 2012, Article ID 957541, 9 pages.

14.
A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Ulam stability of a quartic functional equation, Abs. Appl. Anal. 2012, Art. ID 232630 (2012).

15.
A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl. 2011 (2011): 53. crossref(new window)

16.
A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara. 59 (2013), 235-250. crossref(new window)

17.
A. Bodaghi, C. Park, and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc. To appear.

18.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. crossref(new window)

19.
L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations,An. Univ. Timisoara, Ser. Mat. Inform. 41 (2003), 25-48.

20.
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.

21.
Y. J. Cho, M. E. Gordji, and S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, J. Ineq. Appl. doi:10.1155/2010/403101 crossref(new window)

22.
P. W. Cholewa, Remarks on the stability of functional equations, Aequ. Math. 27 (1984), 76-86. crossref(new window)

23.
S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ Hamburg. 62 (1992), 59-64. crossref(new window)

24.
G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), 127-133. crossref(new window)

25.
Z. Gajda, On the stability of additive mappings, Inter. J. Math. Math. Sci. 14 (1991), 431-434. crossref(new window)

26.
P. G.avruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. crossref(new window)

27.
M. E. Gordji, A. Bodaghi, and C. Park, A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras, U.P.B. Sci. Bull., Series A. 73, Iss. 2 (2011), 65-73.

28.
M. E. Gordji and M. B. Savadkouhi, Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces, J. Ineq. Appl. doi:10.1155/2009/527462. crossref(new window)

29.
O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2001.

30.
O. Hadzic, E. Pap, and M. Budincevic, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika. 38 (2002), no. 3, 363-382.

31.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. crossref(new window)

32.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.

33.
P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368-372. crossref(new window)

34.
O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets. Sys. 12 (1984), 215-229. crossref(new window)

35.
L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions-a question of priority, Aequ. Math. 75 (2008), 289-296. crossref(new window)

36.
B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.

37.
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equa- tion in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572 . crossref(new window)

38.
D. Mihet, The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar. 123, 249256 (2009), doi:10.1007/s10474-008-8101-y. crossref(new window)

39.
D. Mihet, R. Saadati, and S. M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math. 110 (2010), 797-803. crossref(new window)

40.
D. Mihet, R. Saadati, and S. M. Vaezpour, The stability of an additive functional equation in Menger probabilistic normed spaces Math. Slovaca. 61 (2011), 817-826.

41.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos. Sol. Frac. 22 (2004), 10391046. crossref(new window)

42.
J. Matina, Rassias, M. Arunkumar, and S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in quasi- $\beta$ normed spaces: direct and fixed point methods, J. Con. Appl. Math. 14 (2014), 22-46.

43.
J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA. 46 (1982), 126-130. crossref(new window)

44.
J. M. Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timisoara Ser. Mat. Inform. 38 (2000), 121-132.

45.
J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Math. 34(54) (1999), no. 2, 243-252.

46.
J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi-$\beta$-normed spaces, Cont. Anal. Appl. Math. 3 (2015), no. 2, 293-309.

47.
J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-$\beta$-normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. crossref(new window)

48.
J. M. Rassias, E. Son, and H. M. Kim, On the Hyers-Ulam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci. 48 (2011), no. 1, 83-102.

49.
J. M. Rassias, M. Arunkumar, E. Sathya, and N. M. Kumar, Solution And Stability Of A ACQ Functional Equation In Generalized 2-Normed Spaces, Intern. J. Fuzzy Math. Arch. 7 (2015), no. 2, 213-224.

50.
J. M. Rassias, M. Arunkumar, and T. Namachivayam, Stability Of The Leibniz Additive-Quadratic Functional Equation In Felbin's And Random Normed Spaces: A Direct Method, J. Acad. Res. J. Inter. (2015), 102-110.

51.
J. M. Rassias, M. Arunkumar, E. Sathya, and T. Namachivayam, Various Generalized Ulam-Hyers Stabilities of a Nonic Functional Equation, Tbilisi Math. J. (Submitted).

52.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

53.
Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113. crossref(new window)

54.
T. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993. crossref(new window)

55.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. crossref(new window)

56.
Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

57.
K. Ravi, M. Arunkumar, and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci. 3 (2008), no. 8, 36-47.

58.
K. Ravi, J. M. Rassias, M. Arunkumar, and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Art. 114, 29 pages.

59.
R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos. Sol. Frac. 27 (2006), 3313-3344.

60.
R. Saadati, S. M. Vaezpour, and Y. Cho, A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces J. Inequal. Appl. 2009, Art. ID 214530 (2009).

61.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing, New York, NY, USA, 1983.

62.
A. N. Sherstnev, On the notion of a random normed space, Doklady Akademii Nauk SSSR. 149 (1963), 280-283 (Russian).

63.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano. 53 (1983), 113-129. crossref(new window)

64.
S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

65.
T. Z. Xu, J. M. Rassias, and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), 1032-1047.

66.
T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-$\beta$-normed spaces, J. Inequal. Appl. 2010, Art. ID 423231, 23 page.

67.
T. Z. Xu, J. M. Rassias, and W. X. Xu, A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545, 24 pages.

68.
T. Z. Xu and J. M. Rassias, Approximate Septic and Octic mappings in quasi-$\beta$-normed spaces, J. Comput. Anal. Appl. 15 (2013), no. 6, 1110-1119.

69.
S. Y. Yang, A. Bodaghi, and K. A. M. Atan, Approximate cubic *-derivations on Banach *-algebras, Abst. Appl. Anal. 2012, Article ID 684179, 12 pages, doi:10.1155/2012/684179. crossref(new window)