JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion
Seo, Ji-Seok; Kwon, Seung-Jun;
  PDF(new window)
 Abstract
Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.
 Keywords
Deicing Salt;Multi-layered Concrete;Chloride Attack;Freezing and Thawing;Time-dependent Diffusion;
 Language
Korean
 Cited by
 References
1.
J. P. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, pp. 1-15, 1997.

2.
S. J. Kwon, U. J. Na, S. S. Park, and S. H. Jung, "Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion," Structural Safety, Vol. 31, No. 1, pp. 75-83, 2009. crossref(new window)

3.
RILEM, Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, pp. 28-52, 1994.

4.
이윤, 박기태, 권성준, "폴리프로필렌 섬유 보강 RHA 콘크리트의 공학적 특성," 한국콘텐츠학회논문지, 제15권, 제3호, pp. 427-437, 2015.

5.
김윤용, 오광진, 박기태, 권성준, "공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링," 한국콘텐트 학회 논문집, 제15권, 제3호, pp. 415-426, 2015.

6.
김홍삼, 김진철, 이재영, "제설제에 의한 콘크리트 도로구조물의 열화조사," 한국콘크리트학회가을 학술발표회 논문집, 제26권, 제2호, pp. 489-490, 2014.

7.
고경택, 김도겸, 김성옥, 조명석, 송영철, "동결융 해와 염해의 복합작용을 받는 콘크리트의 내구성능 저하 평가," 한국콘크리트학회 봄학술발표회 논문집, 제13권, 제4호, pp. 397-405, 2001.

8.
P. K. Metha and P. J. M. Monteriro, Concrete-Structure, Properties, and Materials, Prentice Hall, 2nd Edition, 1993

9.
양은익, 이성태, 박해균, 김명유, 박진호, "제설제 살포에 따른 콘크리트포장의 염화물 침투특성," 한국콘크리트학회 가을학술발표회 논문집, 제17권, 제2호, pp. 475-478, 2005.

10.
박상준, "연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향," 한국구조물진단유지관리공학회 논문집, 제12권, 제3호, pp. 161-168, 2008.

11.
K. Maekawa, T. Ishida, and T. Kishi, "Multi-scale Modeling of Concrete Performance," Journal of Advanced Concrete Technology, Vol. 1, No. 2, pp. 91-126, 2003. crossref(new window)

12.
T. Ishida, K. Maekawa, and T. Kishi, "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History," Cement and Concrete Research, Vol. 37, pp. 565-578, 2007. crossref(new window)

13.
S. J. Kwon and H. W. Song, "Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling," Cement and Concrete Research, Vol. 40, No. 1, pp. 119-127, 2010. crossref(new window)

14.
S. S. Park, S. J. Kwon, S. H. Jung, and S. W. Lee, "Modeling of Water Permeability in Early aged Concrete with Cracks based on Micro Pore Structure," Construction and Building Materials, Vol. 27, No. 1, pp. 597-604, 2012. crossref(new window)

15.
H. W. Song, H. B. Shim, A. Petcherdchoo, and S. K. Park, "Service Life Prediction of Repaired Concrete Structures under Chloride Environment Using Finite Difference Method," Cement and Concrete Composites, Vol. 31, No. 2, pp. 120-127, 2009. crossref(new window)

16.
L. Tang and G. Joost, "On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete," Cement and Concrete Research, Vol. 37, No. 4, pp. 589-595, 2007. crossref(new window)

17.
C. Andrade, J. M. Diez, and C. Alonso, "Mathematical Modeling of a Concrete Surface "Skin Effect" on Diffusion in Chloride Contaminated Media," Advanced Cement Based Materials, Vol. 6, No. 2, pp. 39-44, 1997. crossref(new window)

18.
M. D. A. Thomas and P. B. Bamforth, "Modeling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag," Cement and Concrete Research, Vol. 29, No. 4, pp. 487-495, 1999. crossref(new window)

19.
M. D. A. Thomas and E. C. Bentz, Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, pp. 12-56, 2000.

20.
E. Poulsen, "On a Model of Chloride Ingress into Concrete, Nordic Mini Seminar-Chloride Transport, Department of Building Materials," Gothenburg, 1993.

21.
문진만, 김진영, 김영준, 오경석, 권성준, "콘크리트내의 이중구조와 시간의존성을 고려한 염화물 해석기법의 개발," 한국구조물진단유지관리공학회 논문집, 제19권, 제5호, pp. 83-91, 2015.

22.
강릉대학교 산학협력단, 친환경성 액상유기산 제설제 개발 및 실용화 연구 보고서, R&D 산학연 04 A02-07, 2007.

23.
한국콘크리트학회, 콘크리트 표준시방서-내구성편, 2006.

24.
이승훈, 권성준, "시간의존성 염화물 확산계수와 압축강도 상관성에 대한 실험적 연구," 한국콘크리트학회 논문집, 제24권, 제6호, pp. 715-726, 2012.