JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery
Lee, Jin-Duk; Bhang, Kon-Joon; Joo, Young-Don;
  PDF(new window)
 Abstract
Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.
 Keywords
Hyperspectral Imagery;Land Cover Classification;Atmospheric Correction;Spectral Angle Mapper;Object-based Classification;
 Language
Korean
 Cited by
 References
1.
S. Haykin, Neural Networks: A Comprehensive Foundation, Englewood Cliffs, NJ: Prentice-Hall, 1999.

2.
Gustavo Camps-Valls and Lorenzo Bruzzone, "Kernel-Based Methods for Hyperspectral Image Classification," IEEE Transactions on Geoscience and Remote Sensing, Vol.43, No.6, 2005.

3.
G. Camps-Valls, L. Gomez-Chova, J. Calpe, E. Soria, J. D. Martin, L. A. Alonso, and J. Moreno, "Robust Support Vector Method for Hyperspectral Data Classification and Knowledge Discovery," IEEE Trans. Geosci. Remote Sens., Vol.42, No.7, pp.1530-1542, Jul. 2004. crossref(new window)

4.
F. Melgani and L. Bruzzone, "Classification of Hyperspectral Remote Sensing Images with Support Vector Machines," IEEE Trans. Geosci. Remote Sens., Vol.42, No.8, pp.1778-1790, Aug, 2004. crossref(new window)

5.
박민호, "정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구," 대한토목학회논문집, 제29권, 제3-D호, pp.419-421, 2009.

6.
최재완, 변영기, 김용일, 유기윤, "분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류," 한국지형공간정보학회지, 제14권, 제4호, pp.71-77, 2006.

7.
변영기, 어영담, 유기윤, "분광 상호정보를 이용한 하이퍼스펙트럴 영상분류," 한국지형공간정보학회지, 제15권, 제3호, pp.33-39, 2007.

8.
김대성, 김진곤, 변영기, 김용일, "무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류," 한국측량학회 2004년도 춘계학술발표회논문집, 2004.

9.
가칠오, 김대성, 변영기, 김용일, "하이퍼스펙트럴 영상의 분류 기법 비교," 한국측량학회 2004년도 추계학술발표회 논문집, 2004.

10.
최은영, Hyperspectral 위성 영상을 이용한 지질매체 분류, 전남대학교, 석사학위논문, 2003.

11.
송지훈, EO-1 Hyperion 영상 자료를 이용한 지질매체 분류에 관한 연구, 전남대학교, 석사학위논문, 2005.

12.
이현직, 유영걸, 유지호, "객체기반분류법을 이용한 토지피복정보의 정확도 향상 방안," 2010 한국지형공간정보학회 추계학술대회 논문집, pp.11-12, 2010.

13.
박래정, "하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석," 한국지능시스템학회 논문지, 제20권, 제4호, pp.534-540, 2010.

14.
이진덕, 방건준, 주영돈, 한승희, "하이퍼스펙트럴 영상으로부터 객체기반 영상분류방법에 의한 토지피복도 및 수애선 추출," 한국콘텐츠학회 2014년도 추계종합학술대회 논문집, 2014.

15.
이진덕, 방건준, 주영돈, 한승희, Comparison of Land Cover Classification Methods in Hyperspectral Remote Sensing, ICCC 2014, pp.77-78, 2014.

16.
S. H. Shin, G. H. Koh, D. S. Kim, and M. W. Pyeon, "Band Aggregation of Hyperspectral Images to Detect Vegetation Information for U-City," ICCC 2011, pp.393-394, 2011.