Advanced SearchSearch Tips
Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Clean Technology
  • Volume 21, Issue 3,  2015, pp.200-206
  • Publisher : The Korean Society of Clean Technology
  • DOI : 10.7464/ksct.2015.21.3.200
 Title & Authors
Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction
Byun, Chang Ki; Im, Hyo Bin; Park, Jihye; Baek, Jeonghun; Jeong, Jeongmin; Yoon, Wang Ria; Yi, Kwang Bok;
  PDF(new window)
In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.
Water gas shift reaction;Copper;Zinc;Cerium;Catalytic activity;
 Cited by
Mikkelsen, M., Jorgensen, M., and Krebs, F. C., "The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide," Energy Environ. Sci., 3, 43-81 (2010). crossref(new window)

Wu, H., Parola, V. L., Pantaleo, G., Puleo, F., Venezia, A. M., and Liotta, L. F., “Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems,” Catal., 3, 563-583 (2013). crossref(new window)

Agrell, J., Birgersson, H., Boutonnet, M., Melian-cabrera, I., Navarro, R. M., and Fierro, J. L. G., “Production of Hydrogen from Methanol over CuZnO Catalysts Promoted by ZrO2 and Al2O3,” J. Catal., 219, 389-403 (2003). crossref(new window)

Trimm, D. L., “Minimisation of Carbon Monoxide in a Hydrogen Stream for Fuel Cell Application,” Appl. Catal. A: General, 296, 1-11 (2005). crossref(new window)

Gokhale, A. A., Dumesic, J. A., and Mavrikakis, M., “On the Mechanism of Low-temperature Water Gas Shift Reaction on Copper,” J. American Chem. Soc., 130, 1402-1414 (2008). crossref(new window)

Mendes, D., Mendes, A., Madeira, L. M., Sousa, J. M., and Basile, A., “The Water Gas Shift Reaction: From Conventional Catalytic Systems to Pd-based Membrane Reactors -A Review,” Asia-Pacific J. Chem. Eng., 5, 111-137 (2010). crossref(new window)

Qi, F., Weber, A., and Flytzani-Stephanopoulos, M., “Nano-structured Au-CeO2 Catalysts for Low-temperature Water-gas Shift,” Catal. Lett., 77, 87-95 (2001). crossref(new window)

Bunluesin, T., Gorte, R. J., and Graham, G. W., “Studies of the Water-gas-shift Reaction on Ceria-supported Pt, Pd, and Rh: Implications for Oxygen-storage Properties,” Appl. Catal. B: Environ., 15, 107-114 (1998). crossref(new window)

Odabaşı, Ç., Günay, M. E., and Yıldırım, R., “Knowledge Extraction for Water Gas Shift Reaction over Noble Metal Catalysts from Publications in the Literature between 2002 and 2012,” Int. J. Hydro. Energy, 39(11), 5733-5746 (2014). crossref(new window)

Jeong, D. W., Jang, W. J., Shim, J. O., Han, W. B., and Roh, H. S., “Low-temperature Water-gas Shift Reaction over Supported Cu Catalysts,” Renewable Energy, 65, 102-107 (2014). crossref(new window)

Rhodes, C., Hutchings, G. J., and Ward, A. M., “Water-gas Shift Reaction: Finding the Mechanistic Boundary,” Catal. Today, 23, 43-58 (1995). crossref(new window)

Shishido, T., Yamamoto, M., Atake, I., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T., and Takehira, K., “Cu/Zn-based Catalysts Improved by Adding Magnesium for Water-gas Shift Reaction,” J. Molecular Catal. A: Chem., 253, 270-278 (2006). crossref(new window)

Figueiredo, R. T., Santos, M. S., Andrade, H. M. C., and Fierro, J. L. G., “Effect of Alkali Cations on the CuZnOAl2O3 Low Temperature Water Gas-shift Catalyst,” Catal. Today, 172, 166-170 (2011). crossref(new window)

Saito, M., Tomoda, K., Takahara, I., Murata, K., and Inaba, M. “Effects of Pretreatments of Cu/ZnO-based Catalysts on their Activities for the Water-gas Shift Reaction,” Catal. Lett., 89, 11-13 (2003). crossref(new window)

Ginés, M. J. L., Amadeo, N., Laborde, M., and Apesteguia, C. R., “Activity and Structure-sensitivity of the Water Gas Shift Reaction over CuZnAl Mixed Oxide Catalysts,” Appl. Catal. A: General, 131, 283-296 (1995). crossref(new window)

Wang, X., Gorte, R. J., and Wagner, J. P., “Deactivation Mechanisms for Pd/ceria during the Water-gas-shift Reaction,” J. Catal., 212, 225-230 (2002). crossref(new window)

Twigg, M, V., and Spencer, M. S., “Deactivation of Supported copper Metal Catalysts for Hydrogenation Reactions,” Appl. Catal. A: General, 212, 161-174 (2001). crossref(new window)

Kumar, P., and Idem. R., “A Comparative Study of Copperpromoted Water Gas Shift (WGS) Catalysts,” Energy & fuels, 21, 522-529 (2007). crossref(new window)

Fernández-Garcıa, M., Rebollo, E. G., Ruiz, A. G., Conesa, J. C., and Soria, J., “Influence of Ceria on the Dispersion and Reduction/Oxidation Behaviour of Alumina-supported Copper Catalysts,” J. Catal., 172, 146-159 (1997). crossref(new window)

Huber, F., Meland, H., Ronning, M., Venvik, H., and Holmen, A., “Comparison of Cu-Ce-Zr and Cu-Zn-Al Mixed Oxide Catalysts for Water-gas Shift,” Topics in Catal., 45, 101-104 (2007). crossref(new window)

Li, L., Zhan, Y., Zheng, Q., Zheng, Y., Chen, C., She, Y., Lin, X., and Wei, K., “Water-gas Shift Reaction over CuO/CeO2 Catalysts: Effect of the Thermal Stability and Oxygen Vacancies of CeO2 Supports Previously Prepared by Different Methods,” Catal. Lett., 130, 532-540 (2009). crossref(new window)

Jacobs, G., Crawford, A., Williams, L., Patterson, P. M., and Davis, B. H., “Low Temperature Water Gas Shift: Comparison of Thoria and Ceria Catalysts,” Appl. Catal. A: General, 267, 27-33 (2004). crossref(new window)

Djinović, P., Jurka, B., and Pintar, A., “Calcination Temperature and CuO Loading Dependence on CuO-CeO2 Catalyst Activity for Water Gas Shift Reaction,” Appl. Catal. A: General, 347, 23-33 (2008). crossref(new window)

Pradhan, S., Reddy, A. S., Devi, R. N., and Chilukuri, S., “Copper-based Catalysts for Water Gas Shift Reaction: Influence of Support on their Catalytic Activity,” Catal. Today, 141, 72-76 (2009). crossref(new window)

Stubenrauch, J. and Vohs, J. M., “Support Effects in the Dissociation of CO on Rh/CeO2 (111),” Catal. Lett., 47, 21-25 (1997). crossref(new window)

Li, Y., Qi, F., and Flytzani-Stephanopoulos. M., “Low-temperature Water Gas Shift Reaction over Cu-and Ni-loaded Cerium Oxide Catalysts,” Appl. Catal. B: Environ., 27, 179-191 (2000). crossref(new window)

Liu, W., and Flytzani-stephanopoulos, M., “Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts I. Catalyst Composition and Activity,” J. Catal., 153, 304-316 (1995). crossref(new window)

Liu, W., and Flytzani-stephanopoulos, M., “Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts II. Catalyst Characterization and Reaction-Kinetics,” J. Catal., 153, 317-332 (1995). crossref(new window)

Jeong, D. W., Na, H. S., Shim, J. O., Jang, W. J., Roh, H. S., Jung, U. H., and Yoon, W. L., “Hydrogen Production from Low Temperature WGS Reaction on co-precipitated Cu-CeO2 Catalysts: An Optimization of Cu Loading,” Int. J. Hydro. Energy, 39, 9135-9142 (2014). crossref(new window)

Rønning, M., Huber, F., Meland, H., Venvik, H., Chen, D., and Holmen, A., “Relating Catalyst Structure and Composition to the Water-gas Shift Activity of Cu-Zn-based Mixed-oxide Catalysts,” Catal. Today, 100, 249-254 (2005). crossref(new window)

Reitz, T. L., Lee, P. L., Czaplewski, K. F., Lang, J. C., Popp, K. E., and Kung, H. H., “Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction,” Fournal of Catal., 199, 193-201 (2001). crossref(new window)

Shan, W., Feng, Z., Li, Z., Zhang, J., Shen, W., and Li, C., “Oxidative Steam Reforming of Methanol on Ce0.9Cu0.1OY Catalysts Prepared by Deposition-precipitation, Coprecipitation, and Complexation-combustion Methods,” J. Catal., 228, 206-217 (2004). crossref(new window)

Patel, S. and Pant, K. K., “Selective Production of Hydrogen Via Oxidative Steam Reforming of Methanol Using Cu-Zn-Ce-Al Oxide Catalysts,” Chem. Eng. Sci., 62, 5436-5443 (2007). crossref(new window)

Agrell, J., Birgersson, H., Boutonnet, M., Melian-Cabrera, I., Navarro, R. M., and Fierro, J. L. G., “Production of Hydrogen from Methanol over Cu/ZnO Catalysts Prometed by ZrO2 and Al2O3,” J. Catal., 219, 389-403 (2003). crossref(new window)

Zhang, D., Yin, H., Zhang, R., Xue, J., and Jiang, T., “Gas Phase Hydrogenation of Maleic Anhydride to γ-Butyrolactone by Cu-Zn-Ce Catalyst in the Presence of n-Butanol,” Catal. Lett., 122, 176-182 (2008). crossref(new window)

Avgouropoulos, G., and Ioannides, T., “Selective CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea-nitrate Combustion Method,” Appl. Catal. A: General, 244, 155-167 (2003). crossref(new window)