Advanced SearchSearch Tips
Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Clean Technology
  • Volume 21, Issue 4,  2015, pp.248-256
  • Publisher : The Korean Society of Clean Technology
  • DOI : 10.7464/ksct.2015.21.4.248
 Title & Authors
Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation
Lee, Young-Ho; Jeon, Su A; Park, Sang-Jun; Youn, Hyun Ki; Shin, Chae-Ho;
  PDF(new window)
MnO2 was prepared by a hydrothermal process method in the range of 120-200 ℃ and 0.5-5 h, calcined at 300 ℃ after induction of precipitation using KMnO4 and MnCl2・4H2O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N2-sorption, scanning electron microscopy, and temperature programmed reduction of H2 or CO. The crystalline structure of pure α-MnO2 or hybrid α/β-MnO2 was controlled by the preparation conditions. The pure α-MnO2 showed better catalytic activity and thermal stability than hybrid α/β-MnO2. Especially, α-MnO2 prepared at 150 ℃ for 1 h has the highest specific surface area 214 m2 g-1, reducibility and labile lattice oxygen species analyzed by H2, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.
MnO2;CO oxidation;Hydrothermal synthesis;Crystalline structure;
 Cited by
Park, J.-H., Kim, Y. J., Cho, K. H., Kim, E. S., and Shin, C.-H., “CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures,” Clean Technol., 17, 41-47 (2011).

Chen, S. F., Li, J. P., Qian, K., Xu, W. P., Lu, Y., Huang, W. X., and Yu, S. H., "Large Scale Photochemical Synthesis of M@TiO2 Nanocomposites (M = Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect," Nano Res., 3, 244-255 (2010). crossref(new window)

Chen, M. S., Cai, Y., Yan, Z., Gath, K. K., Axnanda, S., and Goodman, D. W., “Highly Active Surfaces for CO Oxidation on Rh, Pd, and Pt,” Surf. Sci., 601, 5326-5331 (2007). crossref(new window)

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., and Delmon, B., "Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4," J. Catal., 144, 175-192 (1993).

Shapovalov, V., and Metiu, H., "Catalysis by Doped Oxides: CO Oxidation by AuXCe1-XO2," J. Catal., 245, 205-214 (2007). crossref(new window)

Xu, J., White, T., Li, P., He, C., Yu, J., Yuan, W., and Han, Y.-F., “Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation,” J. Am. Chem. Soc., 132, 10398-10406 (2010). crossref(new window)

Park, J. Y., Zhang, Y., Grass, M., Zhang, T., and Somorjai, G. A., “Tuning of Catalytic CO Oxidation by Changing Composition of Rh-Pt Bimetallic Nanoparticles,” Nano Lett., 8, 673-677 (2008). crossref(new window)

Lin, H.-K., Chiu, H.-C., Tsai, H.-C., Chien, S.-H., and Wang, C.-B., “Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide,” Catal. Lett., 88, 169-174 (2003). crossref(new window)

Jansson, J., "Low-Temperature CO Oxidation over Co3O4/Al2O3," J. Catal., 194, 55-60 (2000). crossref(new window)

Xie, X., Li, Y., Liu, Z. Q., Haruta, M., and Shen, W., "Low-Lemperature Oxidation of CO Catalysed by Co3O4 Nanorods," Nature, 458, 746-749 (2009). crossref(new window)

Rida, K., López Cámara, A., Peña, M. A., Bolívar-Díaz, C. L., and Martínez-Arias, A., "Bimetallic Co-Fe and Co-Cr Oxide Systems Supported on CeO2: Characterization and CO Oxidation Catalytic Behaviour," Int. J. Hydrogen Energ., 40, 11267-11278 (2015). crossref(new window)

Cai, L., Hu, Z., Branton, P., and Li, W., “The Effect of Doping Transition Metal Oxides on Copper Manganese Oxides for the Catalytic Oxidation of CO,” Chinese J. Catal., 35, 159-167 (2014). crossref(new window)

Tan, Z.-D., Tan, H.-Y., Shi, X.-Y., Zhuan, J., Yan, Y.-F., and Yin, Z., “Metal-Organic Framework MIL-53(Al)-Supported Copper Catalyst for CO Catalytic Oxidation Reaction,” Inorg. Chem. Commun., 61, 128-131 (2015). crossref(new window)

Zhao, Y., and Jiang, P., "MnO2 Nanosheets Grown on the ZnO-Nanorod-Modified Carbon Fibers for Supercapacitor Electrode Materials," Colloid. Surface. A: Physicochem. Eng. Aspects, 444, 232-239 (2014). crossref(new window)

Patil, U. M., Sohn, J. S., Kulkarni, S. B., Park, H. G., Jung, Y., Gurav, K. V., Kim, J. H., and Jun, S. C., "A Facile Synthesis of Hierarchical α-MnO2 Nanofibers on 3D-Graphene Foam for Supercapacitor Application," Mater. Lett., 119, 135-139 (2014). crossref(new window)

Wu, C.-H., Ma, J.-S., and Lu, C.-H., “Effects of Reducing Agents on the Electrochemical Properties of the Prepared Manganese Oxide Powders,” Curr. Appl. Phys., 12, 1058-1063 (2012). crossref(new window)

Lv, Y., Li, H., Xie, Y., Li, S., Li, J., Xing, Y., and Song, Y., "Facile synthesis and Electrochemical Properties of MnO2/carbon Nanotubes," Particuology, 15, 34-38 (2014). crossref(new window)

Stobbe, E. R., de Boer, B. A., and Geus, J. W., “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catal. Today, 47, 161-167 (1999). crossref(new window)

Chang, C.-L., Lin, Y.-C., Bai, H., and Liu, Y.-H., “Applying Spray Pyrolysis to Synthesize MnOX for Decomposing Isopropyl Alcohol in Ozone- and Thermal-Catalytic Oxidation,” Korean J. Chem. Eng., 26, 1047-1052 (2010).

Lee, Y. S., Park, J. S., and Oh, K. J., “Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide (NMD) in a Fixed Bed,” Clean Technol., 2, 60-68 (1996).

Feng, Q., Kanohb, H., and Ooi, K., “Manganese Oxide Porous Crystals,” J. Mater. Chem., 9, 319-333 (1998).

Botkovitz, P., Deniard, P., Tournoux, M., and Brec, R., "Structural and Electrochemical Characteristics of a Hollandite-type 'LiXMnO2'," J. Power. Sources, 43-44, 657-665 (1993).

Subramanian, V., Zhu, H., and Wei, B., “Alcohol-Assisted Room Temperature Synthesis of Different Nanostructured Manganese oxides and Their Pseudocapacitance Properties in Neutral Electrolyte,” Chem. Phys. Lett., 453, 242-249 (2008). crossref(new window)

Liang, S., Teng, F., Bulgan, G., Zong, R., and Zhu, Y., "Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation," J. Phys. Chem. C, 112, 5307-5315 (2008). crossref(new window)

Li, Q., Luo, G., Li, J., and Xia, X., "Preparation of Ultrafine MnO2 Powders by the Solid State Method Reaction of KMnO4 with Mn(II) Salts at Room Temperature," J. Mater. Proc. Technol., 137, 25-29 (2003). crossref(new window)

Okitsu, K., Iwatani, M., Nanzai, B., Nishimura, R., and Maeda, Y., "Sonochemical Reduction of Permanganate to Manganese Dioxide: the Effects of H2O2 Formed in the Sonolysis of Water on the Rates of Reduction," Ultrason. Sonochem., 16, 387-391 (2009). crossref(new window)

Lee, J.-H., and Ham, J.-Y., “Synthesis of Manganese Oxide Particles in Supercritical Water,” Korean J. Chem. Eng., 23, 714-719 (2006). crossref(new window)

Tian, Z.-R., Tong, W., Wang, J.-Y., Duan, N.-G., Krishnan, V. V., and Suib, S. L., “Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts,” Science, 276, 926-930 (1997). crossref(new window)

Barboux, P., Tarascon, J. M., and Shokoohi, F. K., "The Use of Acetates as Precursors for the Low-Temperature Synthesis of LiMn2O4 and LiCoO2 Intercalation Compounds," J. Solid State Chem., 94, 185-196 (1991). crossref(new window)

Koksbang, R., Barker, J., Shi, H., and Saïdi, M. Y., “Cathode Materials for Lithium Rocking Chair Batteries,” Solid State Ionics, 84, 1-21 (1996). crossref(new window)

Cho, K. H., Park, J.-H., and Shin, C.-H., “Low Temperature CO Oxidation over Cu-Mn Mixed Oxides,” Clean Technol., 16, 132-139 (2010).

Cao, J.-L., Li, G.-J., Wang, Y., Sun, G., Wang, X.-D., Hari, B., and Zhang, Z.-Y., “Mesoporous Co-Fe-O Nanocatalysts: Preparation, Characterization and Catalytic Carbon Monoxide Oxidation,” J. Environ. Chem. Eng., 2, 477-483 (2014). crossref(new window)

Groen, J. C., Peffer, L. A. A., and Pérez-Ramírez, J., “Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis,” Micropor. Mesopor. Mat., 60, 1-17 (2003). crossref(new window)

Somiya, S., “Hydrothermal Reaction of High Density Sintering Oxides,” Hydrotherm. React. Mater. Sci. Eng., 22-26, 887-903 (1982).

Yanagisawa, K., Kim, J.-H., Sakata, C., Onda, A., Sasabe, E., Yamamoto, T., Matamoros-Veloza, Z., and Rend´on-Angeles, J. C., “Hydrothermal Sintering under Mild Temperature Conditions: Preparation of Calcium-Deficient Hydroxyapatite Compacts,” Z. Naturforsch, 65b, 1038-1044 (2010).

Tiano, A. L., Koenigsmann, C., Santulli, A. C., and Wong, S. S., “Solution-Based Synthetic Strategies for One-Dimensional Metal-Containing Nanostructures,” Chem. Commun., 46, 8093-8130 (2010). crossref(new window)

Zheng, X., Lin, T., Cheng, G., Lan, B., Sun, M., and Yu, L., "Hollow Bipyramid β-MnO2: Pore Size Controllable Synthesis and Degradation Activities," Adv. Powder Technol., 26, 622-625 (2015). crossref(new window)

Hasegawa, Y., Fukumoto, K., Ishima, T., Yamamoto, H., Sano, M., and Miyake, T., “Preparation of Copper-Containing Mesoporous Manganese Oxides and Their Catalytic Performance for CO oxidation,” Appl. Catal. B: Environ., 89, 420-424 (2009). crossref(new window)

Park, J.-H., Kang, D.-C., Park, S.-J., and Shin, C.-H., "CO Oxidation over MnO2 Catalysts Prepared by a Simple Redox Method: Influence of the Mn (II) Precursors," J. Ind. Eng. Chem., 25, 250-257 (2015). crossref(new window)

Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., "Re-Investigating the CO Oxidation Mechanism over Unsupported MnO, Mn2O3 and MnO2 Catalysts," Catal. Today, 131, 477-482 (2008). crossref(new window)