JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Nanowaste Treatment via Incineration
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Clean Technology
  • Volume 22, Issue 1,  2016, pp.1-8
  • Publisher : The Korean Society of Clean Technology
  • DOI : 10.7464/ksct.2016.22.1.001
 Title & Authors
Nanowaste Treatment via Incineration
Kim, Younghun;
  PDF(new window)
 Abstract
Rapid growth in nanotechnology promise novel benefits through the exploitation of their unique industrial applications. However, as increasing of production amount of nanomaterials, their unintentional exposure to the environment has been caused. Therefore, there is a need for effective management of nanowaste to the sustainable nanotechnology. One possible endpoint at the environmental exposure scenario for nanowaste treatment is incineration. Although a few study on the incineration of nanomaterials was reported, pioneering researchers found that although it is possible to incinerate nanowaste without releasing nanoparticles into the atmosphere, the residues (bottom ash or slag) with nanomaterials eventually end up in landfills. Though there are still many questions to understand the fate of nanomaterials in incinerator, firstly we have to study whether nanowaste treatment via incineration is safe to human and environment.
 Keywords
Nanomaterials;Nanowaste;Incineration;Environmental exposure;Nano-hazard;
 Language
Korean
 Cited by
 References
1.
Bystrzejewska-Piotrowska, G., Golimowshki, J., and Urban, P. L., “Nanoparticles: Their Potential Toxicity, Waste and Environmental Management,” Waste Manag., 29, 2587-2595 (2009). crossref(new window)

2.
Woodrow Wilson Center, "An Inventroy of Nanotechnologybased Consumer Products Currently on the Market," The Project on Emerging Nanotechnologies(2011).

3.
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., and Hull, M. S., “Nanotechnology in the Real world: Redeveloping the Nanomaterial Consumer Products Inventory,” Belistein J. Nanotechnol., 6, 1769-1780 (2015). crossref(new window)

4.
Liu, X., Liu, Y., Kong, X., Lobie, P. E., Chen, C., and Zhu, T., “Nanotoxicity: A Growing Need for Study in the Endocrine System,” Small, 9, 1654-1671 (2013). crossref(new window)

5.
Whiteley, C. M., Valle, M. D., Jones, K. C., and Sweetman, A. J., “Challegnes in Assessing the Environmental Fate and Exposure of Nano Silver,” J. Phys. Confer. Series, 304, 012070 (2011). crossref(new window)

6.
Walser, T., Limbach, L. K., Brogioli, R., Erismann, E., Flamigni, L., Hattendorf, B., Juchli, M., Krumeich, F., Ludwig, C., Prikopsky, K., Rossier, M., Saner, D., Sigg, A., Hellweg, S., Günther, D., and Stark, W. J., “Persistence of Engineered Nanoparticles in a Municipal Solid-Waste Incineration Plant,” Nature Nanotechnol., 7, 520-524 (2012). crossref(new window)

7.
Hallock, M. F., Greenley, P., BiBerardinis, L., and Kallin, D., “Potential Risks of Nanomaterials and how to Safety Handle Materials of Uncertain Toxicity,” J. Chem. Health Saf., 16, 16-23 (2009). crossref(new window)

8.
Musee, N., “Nanotechnology Risk Assessment from a Waste Management Perspective: Are the Current Tools Adequate?,” Human Exp. Toxicol., 30, 820-835 (2011). crossref(new window)

9.
Mueller, N. C. and Nowack, B., “Exposure Modeling of Engineered Nanoparticles in the Environment,” Environ. Sci. Technol., 42, 4447-4453 (2008). crossref(new window)

10.
Kim, Y., “Nanowaste Treatment in Environmental Media,” Environ. Health Toxicol., 29, e2014015 (2014). crossref(new window)

11.
Oh, S. Y., Sung, H. K., Park, C., and Kim, Y., “Biosorptive Removeal of Bare-, Critrate-, and PVP-Coated Silver Nanopaticles from Aqueous Solution by Activated Sludge,” J. Ind. Eng. Chem., 25, 51-55 (2015). crossref(new window)

12.
Muller, N. C., Buha, J., Wang, J., Ulrich, A., and Nowack, B., “Modeling the Flows of Engineered Nanomaterials during Waste Handling,” Envorn. Sci. Proc. Imp., 15, 251-259 (2013). crossref(new window)

13.
Holder, A. L., Vejerano, E. P., Zhou, X., and Marr, L. C., “Nanomaterial Disposal by Incineration,” Environ. Sci. Proc. Imp., 15, 1652-1664 (2013). crossref(new window)

14.
Vejerano, E. P., Holder, A. L., and Marr, L. C., “Emissions of Polycyclic Aromatic Hydrocarbons, Polychlorinated Dibenzop-dioxins, and Dibenzofurans from Incineration of Nanomaterials,” Environ. Sci. Technol., 47, 4866-4874 (2013). crossref(new window)

15.
Buha, J., Mueller, N., Nowack, B., Ulrich, A., Losert, S., and Wang, J., “Physical and Chemical Characterization of Fly Ashes from Swiss Waste Incineration Plants and Determination of the Ash Fraction in the Nanometer Range,” Environ. Sci. Technol., 48, 4765-4773 (2014). crossref(new window)

16.
Vejerano, E. P., Leon, E. C., Holder, A. L., and Marr, L. C., “Characterization of Particle Emissions and Fate of Nanomaterials during Incineration,” Environ. Sci. Nano, 1, 133-143 (2014). crossref(new window)

17.
Yoo, H., and Kwak, S.-Y., “TiO2-Encapsulating PVC Capable of Catalytic Self-suppression of Dioxin Emission in Waste Incineration as an Eco-friendly Alternative to Conventional PVC,” Appl. Catal. B: Environ., 104, 193-200 (2011). crossref(new window)

18.
Massari, A., Beggio, M., Hreglich, S., Marin, R., and Zuin, S., “Behavior of TiO2 Nanoparticles during Incineration of Solid Paint Waste: A Lab-scale Test,” Waste Manage., 34, 1897-1907 (2014). crossref(new window)

19.
Vejerano, E. P., Ma, Y., Holder, A. L., Pruden, A., Elankumaran, S., and Marr, L. C., “Toxicity of Particulate matter from Incineration of Nanowaste,” Envrion. Sci. Nano, 2, 143-154 (2015). crossref(new window)

20.
Kiser, M. A., Westerhoff, P., Benn, T., Wang, Y., PérezRivera, J., and Hristovski, K., “Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants,” Environ. Sci. Technol., 43, 6757-6763 (2009). crossref(new window)

21.
Limbach, L. K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., and Stark, W. J., “Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency,” Environ. Sci. Technol., 42, 5828-5833 (2008). crossref(new window)

22.
Jarvie, H. P., Al-Obaidi, H., King, S. M., Bowes, M. J., Lawrence, M. J., Drake, A. F., Green, M. A., and Dobson, P. J., “Fate of Silica Nanoparticles in Simulated Primary Wastewater Treatment,” Environ. Sci. Technol., 43, 8622-8628 (2009). crossref(new window)

23.
Marcoux, M.-A., Matias, M., Olivier, F., and Keck, G., “Review and Prospect of Emerging Contaminants in Waste - Key Issues and Challenges Linked to their Presence in Waste Treatment Schemes: General Aspects and Focus on Nanoparticles,” Wast Manage., 33, 2147-2156 (2013). crossref(new window)

24.
Wigger, H., Hackmann, S., Zimmermann, T., Köser, J., Thöming, J., and Gleich, A., “Influences of use Activities and Waste Management on Environmental Releases of Engineered Nanomaterials,” Sci. Total Environ., 535, 160-171 (2015). crossref(new window)

25.
Westerhoff, P., Lee, S., Yang, Y., Gordon, G. W., Hristovski, K., and Halden, R. U., “Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide,” Environ. Sci. Technol., 49, 9479-9488 (2015). crossref(new window)

26.
Umh, H. N., Lee, B.-C., and Kim, Y., “New Paradigm for Nanowaste Treatment,” Clean Technol., 18, 250-258 (2012). crossref(new window)

27.
OECD Working Party on Resource Productivity and Waste, "Incineration of Waste Containing Nanomaterials," ENV/EPOC/WPRPW(2013)3/FINAL.

28.
Directive 2008/98/EC on Waste, “European Waste Hierarchy,” Waste Framework Directive.