JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Clean Technology
  • Volume 22, Issue 1,  2016, pp.35-44
  • Publisher : The Korean Society of Clean Technology
  • DOI : 10.7464/ksct.2016.22.1.035
 Title & Authors
Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts
An, Hye Young; Kim, Min-Kyung; Jeong, Hui Cheol; Eom, Ki Heon; Won, Yong Sun;
  PDF(new window)
 Abstract
In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between −NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.
 Keywords
Computational chemistry;CO2 fixation;Cyclic carbonate synthesis;Catalytic reaction;
 Language
Korean
 Cited by
 References
1.
Kim, N. S., Yoon, S. H., and Park, G. S., “Introduction to Computational Chemistry,” KIC News, 15, 3 (2012).

2.
Anastas, P. T., and Lankey, R. L., “Life Cycle Assessment and Green Chemistry: The Yin and Yang of Industrial Ecology,” Green Chem., 2(6), 289-295 (2000). crossref(new window)

3.
Anastas, P. T., and Kirchhoff, M. M., “Origins, Current Status, and Future Challenges of Green Chemistry,” Acc. Chem. Res., 35(9), 686-694 (2002). crossref(new window)

4.
North, M., Pasquale, R., and Young, C., “Synthesis of Cyclic Carbonates from Epoxides and CO2,” Green Chem., 12, 1514-1539 (2010). crossref(new window)

5.
Sakakura, T., and Kohno, K., “The Synthesis of Organic Carbonates from Carbon Dioxide,” Chem. Commun., 11, 1312-1330 (2009).

6.
Inoue, S., and Yamazaki, N., “Organic and Bioorganic Chemistry of Carbon Dioxide,” Kodansha Ltd., Tokyo (1981).

7.
Comerford, J. W., Ingram, I. D. V., North, M., and Wu, X., “Sustainable Metal-based Catalysts for the Synthesis of Cyclic Carbonates Containing Five-membered Rings,” Green Chem., 17, 1966-1987 (2015). crossref(new window)

8.
Matano, Y., Nomura, H., and Suzuki, H., “Synthesis and Structural Comparison of Triaryl (sulfonylimino) Nictoranes,” Inorg. Chem., 41, 1940-1948 (2002). crossref(new window)

9.
Shimada, S., Yamazaki, O., Tanaka, T., Rao, M. L. N., Suzuki, Y., and Tanaka, M., “5,6,7,12-tetrahydrodibenz[c,f] [1,5]azabismocines: Highly Reactive and Recoverable Organobisnuth Reagents for Cross-coupling Reactions with Aryl Bromides,” Angew. Chem. Int. Ed., 42, 1845-1848 (2003). crossref(new window)

10.
Breunig, H. J., Ghesner, I., Ghesner, M. E., and Lork, E., “Syntheses, Structures, and Dynamic Behavior of Chiral Racemic Organoantimony and -Bismuth Compounds RR'SbCl, RR'BiCl, and RR'SbM [R = 2-(Me2NCH2)C6H4,R' = CH(Me3Si)2, M=H,Li,Na],” Inorg. Chem., 42, 1751-1757 (2003). crossref(new window)

11.
Yin, S. F., Maruyama, J., Yamashita, T., and Shimada, S., “Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide,” Angew. Chem. Int. Ed., 47, 6590-6593 (2008). crossref(new window)

12.
Sun, J., Fugita, S. I., and Arai, M., “Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide Using Ionic Liquids,” J. Orgaomet. Chem., 690, 3490-3497 (2005). crossref(new window)

13.
Calo, V., Nacci, A., Monopoli, A., and Fanizzi, A., “Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts,” Org. Lett., 4, 2561-2563 (2002).

14.
Koseva, K., Koseva, N., and Troev, K., “Calcium Chloride as Co-catalyst of Onium Halides in the Cycloaddition of Carbon Dioxide to Oxiranes,” J. Mol. Catal. A: Chem., 194, 29-37 (2003). crossref(new window)

15.
Peng, J. J., and Deng, Y. Q., “Cycloaddition of Carbon Dioxide to Propylene Oxide Catalyzed by Ionic Liquids,” New J. Chem., 25, 639-641 (2001). crossref(new window)

16.
He, L. N., Yasuda, H., and Sakakura, T., “New Procedure for Recycling Homogeneous Catalyst: Propylene Carbonate Synthesis Under Supercritical CO2 Conditions,” Green Chem., 5, 92-94 (2003). crossref(new window)

17.
Kawanami, H., Sasaki, A., Matsui, K., and Ikushima, Y., “A Rapid and Effective Synthesis of Propylene Carbonate Using a Supercritical CO2-ionic Liquid System,” Chem. Commun., 896-897 (2003).

18.
Shen, Y. M., Duan, W. L., and Shi, M., “Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes,” J. Org. Chem., 68, 1559-1562 (2003). crossref(new window)

19.
Lu, X. B., Zhang, Y. J., Liang, B., Li, X., and Wang, H., “Chemical Fixation of Carbon Dioxide to Cyclic Carbonates Under Extremely Mild Conditions with Highly Active Bifunctional Catalysts,” J. Mol. Catal. A : Chem., 210, 31-34 (2004). crossref(new window)

20.
Lu, X. B., Zhang, Y. J., Jin, K., Luo, L. M., and Wang, H., “Highly Active Electrophile-nucleophile Catalyst System for the Cycloaddition of CO2 to Epoxides at Ambient Temperature,” J. Catal., 227, 537-541 (2004). crossref(new window)

21.
Paddock, R. L., Hiyama Y., Mckay, J. M., and Nguyen, S. T., “Co(III) Porphyrin/ DMAP: An Efficient Catalyst System for the Synthesis of Cyclic Carbonates from CO2 and Epoxides,” Tetrahedron Lett., 45, 2023-2026 (2004). crossref(new window)

22.
Bhanage, B. M., Fujita, S. I., Ikushima, Y., and Arai, M., “Synthesis of Dimeyhyl Carbonate and Glycols from Carbon Dioxide, Epoxides, and Methanol Using Heterogeneous Basic Metal Oxide Catalysts with High Activity and Selectivity,” Appl. Catal. A : Gen., 219, 259-266 (2001).

23.
Yasuda, H., He, L. N., Takahashi, T., and Sakakura, T., “Nonhalogen Catalysts for Propylene Carbonate Synthesis from CO2 Under Supercritical Conditions,” Appl. Catal. A : Gen., 298, 177-180 (2006). crossref(new window)

24.
Yasuda, H., He, L. N., and Sakakura, T., “Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride,” J. Catal., 209, 547-550 (2002). crossref(new window)

25.
Alvaro, M., Baleizao, C., Das, D., Carbonell, E., and Garcia, H., “CO2 Fixation Using Reconerable Chromium Salts Catalysts: Use of Ionic Liquids as Cosolvent or High-surfacearea Silicates as Supports,” J. Catal., 228, 254-258 (2004). crossref(new window)

26.
Xiao, L. F., Li, F. W., Peng, J. J., and Xia, C. G., “Immobilized Ionic Liquid/zinc Chloride: Heterogeneous Catalyst for Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides,” J. Mol. Catal. A : Chem., 253, 265-269 (2006). crossref(new window)

27.
Wang, J. Q., Yue, W. D., Cai, F., and He, L. N., “Solventless Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides Catalyzed by Silica-supported Ionic Liquids Under Supercritical Conditions,” Catal. Commun., 8, 167-172 (2007). crossref(new window)

28.
Tharun, J., Mathai, G., Kathalikkattil, A. C., Roshan, R., Won, Y. S., Cho, S. J., Chang, J. S., and Park, D. W., “Exploring the Catalytic Potential of ZIF-90: Solventless and Co-catalystfree Synthesis of Propylene Carbonate from Propylene Oxide and CO2,” ChemPlusChem, 80, 715-721 (2015). crossref(new window)

29.
Lee, S. D., Kim, B. M., Kim, D. W., Kim, M. I., Roshan, K. R., Kim, M. K., Won, Y. S., and Park, D. W., “Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides with Polystyrene-supported Quaternized Ammonium Salt Catalysts,” Appl. Catal. A : Gen., 486, 69-76 (2014). crossref(new window)

30.
Roshan, K. R., Kathalikkattil, A. C., Tharun, J., Kim, D. W., Won, Y. S., and Park, D. W., “Amino Acid/KI as Multifunctional Synergistic Catalysts for Cyclic Carbonate Synthesis from CO2 Under Mild Reaction Conditions: A DFT Corroborated Study,” Dalton Trans., 43, 2023-2031 (2014). crossref(new window)

31.
Roshan, K. R., Kim, B. M., Kathalikkattil, A. C., Tharun, J., Won, Y. S., and Park, D. W., “The Unprecedented Catalytic Activity of Alkanolamine CO2 Scrubbers in the Cycloaddition of CO2 and Oxiranes: a DFT Endorsed Study,” Chem. Commun., 50, 13664-13667 (2014). crossref(new window)

32.
Parr, R. G., and Yang, W., “Density Functional Theory of Electronic Structure,” Annu. Rev. Phys. Chem, 46, 701-728 (1995). crossref(new window)

33.
Becke, A. D., “Density-functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648-5652 (1993). crossref(new window)

34.
Orio, M., Pantazis, D. A., and Neese, F., “Density Functional Theory,” Photosynth Res., 102, 443-453 (2009). crossref(new window)

35.
Jurcis, B. S., “Ab Initio and Density Function Theory Computational Studies of the CH4 + H → CH3 + H2 Reaction,” J. Mol. Struct., 430, 17-22 (1998). crossref(new window)

36.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuii, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., Gaussian 09W, Revision C.01, Gaussian, Inc., Wallingford CT, (2009).

37.
Becke, A. D., “Density-functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648-5652 (1993). crossref(new window)

38.
Curtiss, L. A., Raghavachari, K., Redfern, P. C., and Pople J. A., “Investigation of the use of B3LYP Zero-point Energies and Geometries in the Calculation of Enthalpies of Formation,” Chem. Phys. Lett., 270, 419-426 (1997). crossref(new window)

39.
Bauschlieher, C. W., “A Comparison of the Accuracy of Different Functionals,” Chem. Phys. Lett., 246, 40-44 (1995). crossref(new window)

40.
Andersson, M. P., and Uvdal, P., “New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p),” J. Phys. Chem., 109, 2937-2941 (2005). crossref(new window)

41.
Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M., and Sunderlin, L. S., “Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for p-block Elements,” J. Phys. Chem., 105(34), 8111-8116(2001). crossref(new window)

42.
Kwon, D. Y., Kim, J. I., Kang, H. J., Kim, D. Y., Kim, J. H., Lee, B., and Kim, M. S., “Recent Development to Generate Carbon Dioxide-based Cyclic Carbonate and Polycarbonate,” Clean Technol., 17(3), 201-208 (2011).

43.
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., and Yaghi, O. M., “High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture,” Science, 319, 939-942 (2008). crossref(new window)

44.
Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., and Yaghi, O. M., “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res., 42, 58-67 (2009).

45.
Morris, W., Doonan, C. J., Furukawa, H., Banerjee, R., and Yaghi, O. M., “Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks,” J. Am. Chem. Soc., 130(38), 12626-12627 (2008). crossref(new window)

46.
Widjaja, Y., Mysinger, M. M., and Musgrave, C. B., “Ab Initio Study of Adsorption and Decomposition of NH3 on Si(100)(2×1),” J. Phys. Chem, 104, 2527-2533 (2000).

47.
Widjaja, Y., and Musgrave, C. B., “A Density Functional Theory Study of the Nonlocal Effects of NH3 Adsorption and Dissociation on Si(100) (2×1),” Surf. Sci., 469, 9-20(2000). crossref(new window)

48.
Wang, G. T., Mui, C., Musgrave, C. B., and Bent, S. F., “Example of a Thermodynamically Controlled Reaction on a Semiconductor Surface: Acetone on Ge(100)2 × 1,” J. Phys. Chem, 105, 12559-12565 (2001). crossref(new window)

49.
Mui, C., and Musgrave, C. B., “Initial Nitridation of the Ge (100) 2×1 Surface by Ammonia,” Langmuir, 21, 5230-5232 (2005). crossref(new window)

50.
Tharun, J., Bhin, K-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., Ahn, H. Y., Won, Y. S., and Park, D. W., “Ionic Liquid Tethered Post Functionalized ZIF-90 Framework for the Cycloaddition of Propylene Oxide and CO2,” Green Chem., DOI: 10.1039/c5gc02153g (2016). crossref(new window)