JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation and Characterization of Al-Zr Mixed Oxide Catalysts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Clean Technology
  • Volume 22, Issue 1,  2016, pp.9-15
  • Publisher : The Korean Society of Clean Technology
  • DOI : 10.7464/ksct.2016.22.1.009
 Title & Authors
Preparation and Characterization of Al-Zr Mixed Oxide Catalysts
Park, Jung-Hyun; Youn, Hyun Ki; Shin, Chae-Ho;
  PDF(new window)
 Abstract
xAl-yZr mixed oxide catalysts with different molar ratios of Al/(Al+Zr) were prepared by a co-precipitation method and its catalytic performance was compared in the iso-propanol dehydration as a model reaction. The catalysts were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), N2 adsorprion-desorption, NH3 temperature programmed desorption (NH3-TPD), and iso-propanol TPD analyses. The addition of Al into ZrO2 promoted the formation of relatively small particles with large surface areas and retarded the transformation of teragonal phase to monoclnic phase. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of Al molar ratio. The catalytic activity for the dehydration of iso-propanol to propylene was also increased with the same tendency. The catalytic activity could be correlated with high surface area, acidity and easy desorption of iso-propanol.
 Keywords
Al-Zr mixed oxide;Iso-propanol;Dehydration;Acidity;Phase transformation;IPA-TPD;
 Language
Korean
 Cited by
 References
1.
Quashning, V., Deutsch, J., Druska, P., Niclas, H. J., and Kemnitz, E., “Properties of Modified Zirconia used as Friedel-crafts-acylation Catalysts,” J. Catal., 177, 164-174 (1998). crossref(new window)

2.
Damyanova, S., Grange, P., and Delmon, B., “Surface Characterization of Zirconia-Coated Alumina and Silica Carriers,” J. Catal., 168, 421-430 (1997). crossref(new window)

3.
Bozo, C., Guilhaume, N., and Herrmann, J. M., “Role of the Ceria-Zirconia Support in the Reactivity of Platinum and Palladium Catalysts for Methane Total Oxidation under Lean Conditions,” J. Catal., 203, 393-406 (2001). crossref(new window)

4.
Doggali, P., Teraoka, Y., Mungse, P., Shah, I. K., Rayalu, S., and Labhsetwar, N., “Combustion of Volatile Organic Compounds over Cu-Mn Based Mixed Oxide Type Catalysts Supported on Mesoporous Al2O3, TiO2 and ZrO2,” J. Mol. Catal. A: Chem., 358, 23-30 (2012). crossref(new window)

5.
Zhao, C., and Wachs, I. E., “Selective Oxidation of Propylene over Model Supported V2O5 Catalysts: Influence of Surface Vanadia Coverage and Oxide Support,” J. Catal., 257, 181-189 (2008). crossref(new window)

6.
Sim, H. I., Park, J. H., Cho, J. H., Ahn, J. H., Choi, M. S., and Shin, C. H., “The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol,” Korean Chem. Eng. Res., 51, 208-213 (2013). crossref(new window)

7.
Chuah, G. K., and Jaenicke, S., “The Preparation of High Surface Area Zirconia-Influence of Precipitating Agent and Digestion,” Appl. Catal. A: Gen., 163, 261-273 (1997). crossref(new window)

8.
Turek, W., and Krowiak, A., "Evaluation of Oxide Catalysts' properties Based on Isopropyl Alcohol Conversion," Appl. Catal. A: Gen., 417-418, 102-110 (2012).

9.
Jung, K. T., and Bell, A. T., “The Effect of Synthesis and Pretreatment Conditions on the Bulk Structure and Surface Properties of Zirconia,” J. Mol. Catal. A: Chem., 163, 27-42 (2000). crossref(new window)

10.
Águila, G., Gracia, F., and Araya, P., “CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature,” Appl. Catal. A: Gen., 343, 16-24 (2008). crossref(new window)

11.
Seo, J. G., Youn, M. H., Park, S. Y., Chung, J. S., and Song, I. K., “Hydrogen Production by Steam Reforming of Liquefied natural Gas (LNG) over Ni/Al2O3-ZrO2 Xerogel Catalysts: Effect of Calcination Temperature of Al2O3-ZrO2 Xerogel Supports,” Inter. J. Hydrogen Energy, 34, 3755-3763 (2009). crossref(new window)

12.
Zhang, D., Duan, A., Zhao, Z., Wan, G., Gao, Z., Jiang, G., Chi, K., and Chuang, K. H., “Preparation, Characterization and Hydrotreating Performances of ZrO2-Al2O3-supported NiMo Catalysts,” Catal. Today, 149, 62-68 (2010). crossref(new window)

13.
Li, J., Chen, J., Song, W., Liu, J., and Shen, W., “Influence of Zirconia Crystal Phase on the Catalytic Performance of Au/ZrO2 Catalysts for Low-temperature Water Gas Shift Reaction,” Appl. Catal. A: Gen., 334, 321-329 (2008). crossref(new window)

14.
Therdthianwong, S., Therdthianwong, A., Siangchin, C., and Yongprapat, S., “Synthesis Gas Production from Dry Reforming of Methane over Ni/Al2O3 Stabilized by ZrO2,” Inter. J. Hydrogen Energy, 33, 991-999 (2008). crossref(new window)

15.
Iriondo, A., Cambra, J. F., Güemez, M. B., Barrio, V. L., Requies, J., Sánchez-Sánchez, M. C., and Navarro, R. M., “Effect of ZrO2 Addition on Ni/Al2O3 Catalyst to Produce H2 from Glycerol,” Inter. J. Hydrogen Energy, 37, 7084-7093 (2012). crossref(new window)

16.
Zhao, Y., Qin, Z., Wang, G., Dong, M., Huang, L., Wu, Z., Fan, W., and Wang, J., “Catalytic Performance of V2O5/ZrO2-Al2O3 for Methanol Oxidation,” Fuel, 104, 22-27 (2013). crossref(new window)

17.
Ferkel, H., Naser, J., and Riehemann, W., “Laser-induced Solid Solution of the Binary Nanoparticle System Al2O3-ZrO2,” Nanostruct. Mater., 8, 457-464 (1997). crossref(new window)

18.
http://en.wikipedia.org/wiki/Ionic_radius

19.
Kwak, J. H., Hu, J. Z., Kim, D. H., Szanyi, J., and Peden, C. H. F., “Penta-coordinated Al3+ Ions as Preferential Nucleation Sites for BaO on γ-Al2O3: An Ultra-high-magnetic Field 27Al MAS NMR Study,” J. Catal., 251, 189-194 (2007). crossref(new window)

20.
Kwak, J. H., Hu, J., Lukaski, A., Kim, D. H., Szanyi, J., and Peden, C. H. F., “Role of Pentacoordinated Al3+ Ions in the High Temperature Phase Transformation of γ-Al2O3,” J. Phys. Chem. C., 112, 9486-9492 (2008). crossref(new window)

21.
Kumar, V. S., Nagaraja, B. M., Shashikala, V., Seetharamulu, P., Padmasri, A. H., Raju, B. D., and Rama Rao, K. S., “Role of Acidic and Basic Sites of Al2O3 in Predicting the Reaction Pathway of Isophorone Transformation,” J. Mol. Catal. A: Chem., 223, 283-288 (2004). crossref(new window)