JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI
Heo, Jeong-Eun; Lee, Hee-Won;
  PDF(new window)
 Abstract
The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.
 Keywords
binaries: symbiotic;stars: individual: V1016 Cyg;scattering;accretion, accretion disks;line: profiles;
 Language
English
 Cited by
1.
AG Pegasi – now a classical symbiotic star in outburst?, Monthly Notices of the Royal Astronomical Society, 2016, 462, 4, 4435  crossref(new windwow)
2.
Profile disparity of Raman-scattered O VI in symbiotic stars, Journal of Physics: Conference Series, 2016, 728, 4, 042007  crossref(new windwow)
3.
Formation of broad Balmer wings in symbiotic stars, Journal of Physics: Conference Series, 2016, 728, 072016  crossref(new windwow)
4.
Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco, Journal of Physics: Conference Series, 2016, 728, 072014  crossref(new windwow)
 References
1.
Allen, D. A. 1980, Candidate Symbiotic Stars in the Large Magellanic Cloud, ApJ, 20, 131

2.
Angeloni, R., Contini, M., Ciroi, S., & Rafanelli, P. 2010, The Spectral Energy Distribution of D-Type Symbiotic Stars: the Role of Dust Shell, MNRAS, 402, 2075 crossref(new window)

3.
Bach, K., & Lee, H.-W. 2014, The Kramers-Heisenberg Formula and the Gunn-Peterson Trough, JKAS, 47, 187

4.
Birriel, J. 2004, Raman-Scattered He II at 4851 Å in the Symbiotic Stars HM Sagittae and V1016 Cygni, ApJ, 612, 1136 crossref(new window)

5.
Brocksopp, C., Bode, M. F., Eyres, S. P. S., Crocker, M. M., Davis, R., & Taylor, A. R. 2002, The Central Binary and Surrounding Nebular of the Symbiotic Star V1016 Cygni, ApJ, 571, 947 crossref(new window)

6.
de Val-Borro, M., Karovska, M., & Sasselov, D. 2009, Numerical Simulations of Wind Accretion in Symbiotic Binaries, ApJ, 700, 1148 crossref(new window)

7.
Feibelman, W. 1983, Profiles and Intensity Ratios of the C IV λ 1548, 1550 Emission Lines in Planetary Nebulae, A&A, 122, 335

8.
Harries, T. J., & Howarth, I. D. 1997, Raman Scattering in Symbiotic Stars. II. Numerical Models, A&AS, 121, 15

9.
Iben, I. Jr., & Tutukov, A. V. 1984, Supernovae of Type I as End Products of the Evolution of Binaries with Components of Moderate Initial Mass (M not Greater than about 9 Solar Masses), ApJS, 54, 335 crossref(new window)

10.
Ivison, R. J., Bode, M. F., Roberts, J. A., Meaburn, J., Davis, R. J., Nelson, R. F., & Spencer, R. E. 1991, A Multi-Frequency Study of Symbiotic Stars. I - Near-simultaneous Optical and Radio Observations, MNRAS, 249, 374 crossref(new window)

11.
Kang, E.-H., & Lee, H.-W. 2008, Effects of Collisional DeExcitation on the Resonance Doublet Flux Ratios in Symbiotic Stars and Planetary Nebulae, JKAS, 41, 49

12.
Lee, H.-W. 2012, Raman Scattered He II 4332 in the Symbiotic Star V1016 Cygni, ApJ, 750, 127 crossref(new window)

13.
Lee, H.-W., & Kang, S. 2007, Raman-scattered O VI 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae, ApJ, 669, 1156 crossref(new window)

14.
Lee, H.-W., & Park, M.-G. 1999, Toward the Evidence of the Accretion Disk Emission in the Symbiotic Star RR Telescopii, ApJ, 515, L89 crossref(new window)

15.
Lee, H.-W., Heo, J.-E., & Lee, B.-C. 2014, Raman-Scattered Ne VII 973 at 4881 in the Symbiotic Star V1016 Cygni, MNRAS, 442, 1956 crossref(new window)

16.
Livio, M., Prialnik, D., & Regev, O. 1989, Accretion onto Hot White Dwarfs in Relation to Symbiotic Novae, ApJ, 341, 299 crossref(new window)

17.
Lorenzetti, D., Saraceno, P., & Strafella, F. 1985, On the IR Variability of Symbiotic Stars - The Case of V1016 Cygni, HM Sagittae and V1329 Cygni, ApJ, 298, 350 crossref(new window)

18.
Mastrodemos, N., & Morris, M. 1998, Bipolar Preplanetary Nebulae: Hydrodynamics of Dusty Winds in Binary Systems. I. Formation of Accretion Disks, ApJ, 497, 303 crossref(new window)

19.
Marsh, T. R., & Horne, K. 1988, Images of Accretion Discs. II - Doppler Tomography, MNRAS, 235, 269 crossref(new window)

20.
Mikolajewska, M. 2012, Symbiotic Stars: Observations Confront Theory, Baltic Astron., 21, 5

21.
Mikolajewska, M., Friedjung, M., & Quiroga, C. 2006, Line Formation Regions of the UV Spectrum of CI Cygni, A&A, 460, 191

22.
Mikolajewska, M., & Kenyon, S. 1992, On the Nova-Like Eruptions of Symbiotic Binaries, MNRAS, 256, 177 crossref(new window)

23.
McCuskey, S. 1965, Activity in H Emission Object, IAU Circ., 1916, 0

24.
Nussbaumer, H., Schmid, H. M., & Vogel, M. 1989, Raman Scattering as a Diagnostic Possibility in Astrophysics, A&A, 211, L27

25.
Parimucha, S., Chochol, D., Pribulla, T., Buson, L. M., & Vittone, A. A. 2003, Fifteen-Year Period of Activity in the Symbiotic Nova V1016 Cyg, ASPC, 303, 80

26.
Perlmutter, S., et al. 1998, Discovery of a Supernova Explosion at Half the Age of the Universe, Nature, 391, 51 crossref(new window)

27.
Schild, H., & Schmid, H. M. 1996, Spectropolarimetry of Symbiotic Stars. On the Binary Orbit and the Geometric Structure of V1016 Cygni, A&A, 310, 211

28.
Schmid, H. M. 1989, Identification of the Emission Bands at 6830, 7088 Å A&A, 211, L31

29.
Schmid, H. M. 1996, Simulations of the Raman-Scattered OVI Emission Lines in Symbiotic Stars, MNRAS, 282, 511 crossref(new window)

30.
Schmid, H. M., & Schild, H. 2002, Orbital Motion in Symbiotic Mira Systems, A&A, 395, 117

31.
Schmid, H. M., et al. 1999, ORFEUS Spectroscopy of the O BT VI Lines in Symbiotic Stars and the Raman Scattering Process, A&A, 348, 950

32.
Solf, J. 1983, Optical Confirmation of a Very Compact Bipolar Nebula Associated with the Symbiotic Star V1016 Cygni, ApJ, 266, L113 crossref(new window)

33.
van Groningen, E. 1993, Further Evidence for Raman Scattering in Rr-Telescopii, MNRAS, 264, 975 crossref(new window)

34.
Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge University Press)

35.
Watson, S. K., Eyres, S. P. S., Davis, R. J., Bode, M. F., Richards, A. M. S., & Kenny, H. T. 2000, Colliding Winds in V1016 Cygni, MNRAS, 311, 449 crossref(new window)

36.
Whitelock, P. 1987, Symbiotic Miras, PASP, 99, 573 crossref(new window)