JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS
Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul;
  PDF(new window)
 Abstract
We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.
 Keywords
Hydrodynamics;methods: numerical;ISM: supernova remnants and clouds;
 Language
English
 Cited by
1.
MULTI-WAVELENGTH STUDY OF THE SUPERNOVA REMNANT KES 79 (G33.6+0.1): ON ITS SUPERNOVA PROPERTIES AND EXPANSION INTO A MOLECULAR ENVIRONMENT, The Astrophysical Journal, 2016, 831, 2, 192  crossref(new windwow)
 References
1.
Arthur, S. J., & Falle, A. E. G. 1991, Multigrid Methods Applied to an Explosion at a Plane Density Interface, MNRAS, 251, 93 crossref(new window)

2.
Anders, E., & Grevesse, N. 1989, Abundances of the Elements: Meteoritic and Solar, Geochim. Cosmochim. Acta, 53, 197 crossref(new window)

3.
Becker, R. H., White, R. L., & Helfand, D. J. 1995, The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters, ApJ, 450, 559 crossref(new window)

4.
Cornett, R. H., Chin, G., & Knapp, G. R. 1977, Observations of CO Emission from a Dense Cloud Associated with the Supernova Remnant IC 443, A&A, 54, 889

5.
Denoyer, L. K. 1979, Discovery of Shocked CO within a Supernova Remnant, ApJl, 232, L165 crossref(new window)

6.
Dohm-Palmer, R. C., & Jones, T. W. 1996, Young Supernova Remnants in Nonuniform Media, ApJ, 471, 279 crossref(new window)

7.
Chen, Y., & Slane, P. O. 2001, ASCA Observations of the Thermal Composite Supernova Remnant 3C 391, ApJ, 563, 202 crossref(new window)

8.
Chen, Y., Slane, P. O., & Wang, Q. D. 2004, A Chandra ACIS View of the Thermal Composite Supernova Remnant 3C 391, ApJ, 616, 885 crossref(new window)

9.
Chen, Y., Su, Y., Slane, P. O., & Wang, Q. D. 2005, Chandra Spectroscopy of Supernova Remnant 3C 391, JKAS, 38, 211

10.
Cioffi, D. F., Mckee, C. F., & Bertshinger, E. 1988, Dynamics of Radiative Supernova Remnants, ApJ, 334, 252 crossref(new window)

11.
Cox, D. P., Shelton, R. L., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rózyczka, M. 1999, Modeling W44 as a Supernova Remnant in a Density Gradient with a Partially Formed Dense Shell and Thermal Conduction in the Hot Interior. I. The Analytical Model, ApJ, 524, 179 crossref(new window)

12.
Falle, S. A. E. G., & Garlick, A. R. 1982, A model of the Cygnus Loop, MNRAS, 115, 247

13.
Ferreira, S. E. S., & de Jagar, O. C. 2008, Supernova Remnant Evolution in Uniform and Non-Uniform Media, A&A, 478, 17

14.
Harten, A., Lax, P. D., & van Leer, B. 1983, On Upstream Differencing and Godunov Type Methods for Hyperbolic Conservation Laws, SIAM Rev., 25(1), 35-61 crossref(new window)

15.
Jiang, B., Chen, Y., Wang, J., Wang, J., Su, Y., Zhou, X., Safi-Harb, S., & Delaney, T. 2010, Cavity of Molecular Gas Associated with Supernova Remnant 3C 397, ApJ, 712, 1147 crossref(new window)

16.
Koo, B.-C., & Mckee, C. F., 1990, Dynamics of Adiabatic Blast Waves in Media of Finite Mass, ApJ, 354, 513 crossref(new window)

17.
Koo, B.-C., & Kang, J.-H. 2004, Visibility of Old Supernova Remnants in HI 21-cm Emission Line, MNRAS, 349, 983 crossref(new window)

18.
McKee, C. F., & Ostriker, J. P. 1977, A Theory of the Interstellar Medium - Three Components Regulated by Supernova Explosions in an Inhomogeneous Substrate, ApJ, 218, 148 crossref(new window)

19.
Petruk, O. 2001, Thermal X-Ray Composites as an Effect of Projection, A&A, 371, 267

20.
Raymond, J. C., & Smith, B. W. 1977, Soft X-Ray Spectrum of a Hot Plasma, ApJS, 35, 419 crossref(new window)

21.
Reynolds, S. P., & Moffett, D. A., 1993, High-Resolution Radio Observations of the Supernova Remnant 3C 391 - Possible Breakout Morphology, AJ, 105, 2226 crossref(new window)

22.
Rho, J., & Peter, R. 1998, Mixed-Morphology Supernova Remnants, ApJ, 503, L167 crossref(new window)

23.
Sánchez-salcedo, F. J., Vázquez-Semadini, E., & Gazol, A. 2002, The Nonlinear Development of the Thermal Instability in the Atomic Interstellar Medium and Its Interaction with Random Fluctuations, ApJ, 577, 768 crossref(new window)

24.
Sedov, L. I. 1946, Propagation of Strong Shock Waves, Prikl. Mat. Mekh., 10, 241

25.
Seward, F. D. 1985, Comments Astrophys. XI, 1, 15

26.
Seward, F. D. 1999, Allens Astrophysical Quantities, 4th edition, ed. by A. N. Cox, 195

27.
Shapiro, R. P., & Moore, R. T. 1976, Time-Dependent Radiative Cooling of a Hot, Diffuse Cosmic Gas, and the Emergent X-Ray Spectrum, ApJ, 207, 460 crossref(new window)

28.
Shull, J. M. 1980, The Signature of a Buried Supernova, ApJ, 237, 769 crossref(new window)

29.
Sod, G. A. 1978, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comput. Phys., 27, 1 crossref(new window)

30.
Taylor, G. I. 1950, The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion, Proc. Roy. Soc. London A, 201, 159 crossref(new window)

31.
Tenorio-Tagle, G., Bodenheimer, P., & Yorke, H. W. 1985, Non-Spherical Supernova Remnants. II - The Interaction of Remnants with Molecular Clouds, A&A, 145, 70

32.
Tilley, D. A., Balsara, D. S., & Howk, J. C. 2006, Simulations of Mixed-Morphology Supernova Remnants with Anisotropic Thermal Conduction, MNRAS, 371, 1106 crossref(new window)

33.
Velázquez, P., de la Fuente, E., Rosado, M., & Raga, A. C. 2001, A Single Explosion Model for the Supernova Remnant 3C 400.2, A&A, 377, 1136

34.
Wang, Z. R., & Seward, F. D. 1984, X-Rays from the SNR 3C 391, ApJ, 279, 705 crossref(new window)

35.
Wheeler, J. C., Mazurek, T. J., & Sivaramakrishnan, A. 1980, Supernovae in Molecular Clouds, ApJ, 237, 781 crossref(new window)

36.
White, R. L., & Long, K. S. 1991, Supernova Remnant Evolution in an Interstellar Medium with Evaporating Clouds, ApJ, 373, 543 crossref(new window)

37.
Wilner, D. J., Reynolds, S. P., & Moffett, D. A. 1998, CO Observations toward the Supernova Remnant 3C 391, AJ, 115, 247 crossref(new window)

38.
Wolfire, M. G., Mckee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, The Neutral Atomic Phases of the Interstellar Medium, ApJ, 443, 512

39.
Xu, J., & Stone, J. M. 1995, The Hydrodynamics of Shock-Cloud Interactions in Three Dimensions, ApJ, 454, 172 crossref(new window)

40.
Yorke, H. W., Tenorio-Tagle, G., Bodenheimer, P., & Rozyczka, M. 1989, The Combined Role of Ionization and Supernova Explosions in the Destruction of Molecular Clouds, A&A, 216, 207